
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11651184/publications.pdf Version: 2024-02-01

FC MITEL

#	Article	IF	CITATIONS
1	Acousto-elastic radiation force on a fluid cylindrical inclusion embedded in a linear elastic medium. Chinese Journal of Physics, 2022, 77, 1843-1853.	3.9	3
2	Scattering of arbitrary-shaped optical polarized beams by a PEMC sphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 281, 108101.	2.3	10
3	Circularly-polarized Airy light-sheet spinner tweezers and particle transport. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 260, 107466.	2.3	10
4	Longitudinal and lateral interparticle optical binding and extrinsic radiation force and torque on a pair of lossless dielectric cylinders of arbitrary sizes and the acoustical analogue. Optik, 2021, 242, 166831.	2.9	4
5	Optical trapping of a perfect electromagnetic conductor (PEMC) sphere exhibiting rotary polarization using nonparaxial focused Gaussian single-beam tweezers. Results in Optics, 2021, 4, 100089.	2.0	14
6	Quadratic cross-sections in the multiple scattering by a pair of liquid cylinders insonified by arbitrary-shaped acoustical sheets. Chinese Journal of Physics, 2021, 72, 366-374.	3.9	3
7	Radiation force of stationary elastic compressional and shear plane waves on a cylinder encased in a linear elastic solid. Forces in Mechanics, 2021, 4, 100040.	2.8	4
8	Scattering asymmetry parameters for a circular cylinder in arbitrary–shaped acoustical sheets. Communications in Nonlinear Science and Numerical Simulation, 2021, 103, 106022.	3.3	0
9	Optical resonance and rainbow scattering of an electromagnetic Airy light-sheet by a dielectric sphere of arbitrary size. Results in Optics, 2021, 5, 100143.	2.0	0
10	Interaction of circularly polarized light with an absorptive electromagnetic conductor sphere – Radiation force and spin torque. Results in Optics, 2021, 5, 100128.	2.0	8
11	Optical torque on an absorptive dielectric sphere of arbitrary size illuminated by a linearly-polarized Airy light-sheet. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 256, 107327.	2.3	9
12	Acoustic radiation force on a cylindrical particle near a planar rigid boundary II. – Viscous fluid cylinder example and inherent radiation torque. Physics Open, 2020, 4, 100029.	1.5	11
13	Optical radiation force on a dielectric sphere of arbitrary size illuminated by a linearly polarized Airy light-sheet. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 245, 106853.	2.3	16
14	Radiation force and torque of light-sheets illuminating a cylindrical particle of arbitrary geometrical cross-section exhibiting circular dichroism. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 255, 107242.	2.3	13
15	Optical radiation force on a perfect electromagnetic conductor (PEMC) sphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 256, 107280.	2.3	20
16	Dynamic oscillatory radiation force in optical heterodyning. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 250, 106994.	2.3	13
17	Optical cross-sections and energy efficiencies of a cylindrical material exhibiting circular dichroism in arbitrary-shaped monochromatic light-sheets. Optik, 2020, 217, 164744.	2.9	11
18	Optical TM â‡,, TE mode conversion contribution to the radiation force on a cylinder exhibiting rotary polarization in circularly polarized light. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 253, 107115.	2.3	14

#	Article	IF	CITATIONS
19	Optical resonance scattering of a dielectric sphere of arbitrary size illuminated by polarized Airy beams. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 245, 106858.	2.3	12
20	Optical radiation force circular dichroism spectroscopy. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 244, 106850.	2.3	17
21	Corrigenda to "Optical radiation force circular dichroism spectroscopy―[J Quant Spectrosc Radiat Transfer 2020;244:106850]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 251, 107016.	2.3	0
22	Radiation force and torque on perfect electrically–conducting (PEC) corrugated circular and elliptical cylinders in TE or TM polarized plane progressive waves with arbitrary incidence. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 235, 15-23.	2.3	20
23	Edge-induced radiation force and torque on a cylindrically-radiating active acoustic source located near a rigid corner-space. Journal of Ocean Engineering and Science, 2019, 4, 166-172.	4.3	1
24	Electromagnetic radiation force on a perfect electromagnetic conductor (PEMC) circular cylinder. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 233, 21-28.	2.3	28
25	Pushing, pulling and electromagnetic radiation force cloaking by a pair of conducting cylindrical particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 206, 142-150.	2.3	20
26	Active electromagnetic invisibility cloaking and radiation force cancellation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 207, 48-53.	2.3	17
27	Scattering cross-section of a cylindrical conducting particle illuminated by electromagnetic plane waves near a conducting quarter-space. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 215, 77-83.	2.3	9
28	Acoustic radiation force of attraction, cancellation and repulsion on a circular cylinder near a rigid corner space. Applied Mathematical Modelling, 2018, 64, 688-698.	4.2	14
29	Optical torque on a magneto-dielectric Rayleigh absorptive sphere by a vector Bessel (vortex) beam. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 191, 96-115.	2.3	30
30	Transient ultrasonic wave propagation in porous material of non-integer space dimension. Wave Motion, 2017, 72, 276-286.	2.0	7
31	Optical pulling force and torques on Rayleigh semiconductor prolate and oblate spheroids in Bessel tractor beams. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 196, 201-212.	2.3	15
32	Scattering of Airy elastic sheets by a cylindrical cavity in a solid. Ultrasonics, 2017, 81, 100-106.	3.9	11
33	Optical spin torque induced by vector Bessel (vortex) beams with selective polarizations on a light-absorptive sphere of arbitrary size. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 196, 53-68.	2.3	25
34	Ultrasonic superlensing jets and acoustic-fork sheets. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1648-1654.	2.1	10
35	Acoustic attraction, repulsion and radiation force cancellation on a pair of rigid particles with arbitrary cross-sections in 2D: Circular cylinders example. Annals of Physics, 2017, 386, 1-14.	2.8	19
36	Nonparaxial Bessel and Bessel–Gauss pincers light-sheets. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 171-175.	2.1	23

#	Article	IF	CITATIONS
37	Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves. Ultrasonics, 2017, 74, 62-71.	3.9	24
38	Transient acoustic wave in self-similar porous material having rigid frame: Low frequency domain. Wave Motion, 2017, 68, 12-21.	2.0	9
39	Optical tractor Bessel polarized beams. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 187, 97-115.	2.3	66
40	Physical constraints on the non-dimensional absorption coefficients of compressional and shear waves for viscoelastic cylinders. Ultrasonics, 2017, 74, 233-240.	3.9	1
41	Acoustical spinner tweezers with nonparaxial Hermite-Gaussian acoustical-sheets and particle dynamics. Ultrasonics, 2017, 73, 236-244.	3.9	23
42	Optical Bessel beam illumination of a subwavelength prolate gold (Au) spheroid coated by a layer of plasmonic material: radiation force, spin and orbital torques. Journal of Physics Communications, 2017, 1, 015001.	1.2	19
43	Negative optical spin torque wrench of a non-diffracting non-paraxial fractional Bessel vortex beam. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 182, 172-179.	2.3	30
44	Acoustic radiation force and spin torque on a viscoelastic cylinder in a quasi-Gaussian cylindrically-focused beam with arbitrary incidence in a non-viscous fluid. Wave Motion, 2016, 66, 31-44.	2.0	31
45	Optical pulling force on a magneto-dielectric Rayleigh sphere in Bessel tractor polarized beams. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 184, 360-381.	2.3	51
46	Spin reversal and orbital torques on a viscous fluid Rayleigh sphere located arbitrarily in acoustical Bessel vortex (spiraling) beams. Ultrasonics, 2016, 72, 57-65.	3.9	13
47	Extended optical theorem for scalar monochromatic acoustical beams of arbitrary wavefront in cylindrical coordinates. Ultrasonics, 2016, 67, 129-135.	3.9	20
48	Acoustic backscattering and radiation force on a rigid elliptical cylinder in plane progressive waves. Ultrasonics, 2016, 66, 27-33.	3.9	48
49	Interaction of an acoustical 2D-beam with an elastic cylinder with arbitrary location in a non-viscous fluid. Ultrasonics, 2015, 62, 244-252.	3.9	24
50	Optical theorem for two-dimensional (2D) scalar monochromatic acoustical beams in cylindrical coordinates. Ultrasonics, 2015, 62, 20-26.	3.9	46
51	Resonance scattering of a dielectric sphere illuminated by electromagnetic Bessel non-diffracting (vortex) beams with arbitrary incidence and selective polarizations. Annals of Physics, 2015, 361, 120-147.	2.8	48
52	Generalization of the optical theorem for monochromatic electromagnetic beams of arbitrary wavefront in cylindrical coordinates. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 166, 81-92.	2.3	32
53	From Bessel beam to complex-source-point cylindrical wave-function. Annals of Physics, 2015, 355, 55-69.	2.8	10
54	Acoustic radiation force on oblate and prolate spheroids in Bessel beams. Wave Motion, 2015, 57, 231-238.	2.0	44

#	Article	IF	CITATIONS
55	Acoustic scattering of a Bessel vortex beam by a rigid fixed spheroid. Annals of Physics, 2015, 363, 262-274.	2.8	17
56	Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers. Annals of Physics, 2014, 342, 158-170.	2.8	28
57	Pseudo-Gaussian cylindrical acoustical beam – Axial scattering and radiation force on an elastic cylinder. Journal of Sound and Vibration, 2014, 333, 7326-7332.	3.9	16
58	Mechanism of the quasi-zero axial acoustic radiation force experienced by elastic and viscoelastic spheres in the field of a quasi-Gaussian beam and particle tweezing. Ultrasonics, 2014, 54, 351-357.	3.9	11
59	Single Bessel tractor-beam tweezers. Wave Motion, 2014, 51, 986-993.	2.0	60
60	Letters: Comment on "Effects of multi-scattering on the performance of a single-beam acoustic manipulation device". IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 2235-2236.	3.0	0
61	Vector wave analysis of an electromagnetic high-order Bessel vortex beam of fractional type α: II. The cases of standing and quasi-standing waves. Optik, 2013, 124, 1469-1471.	2.9	7
62	Arbitrary scattering of an acoustical high-order Bessel trigonometric (non-vortex) beam by a compressible soft fluid sphere. Ultrasonics, 2013, 53, 956-961.	3.9	22
63	Transverse (lateral) instantaneous force of an acoustical first-order Bessel vortex beam centered on a rigid sphere. Ultrasonics, 2012, 52, 151-155.	3.9	2
64	Three-dimensional vectorial analysis of an electromagnetic non-diffracting high-order Bessel trigonometric beam. Wave Motion, 2012, 49, 561-568.	2.0	11
65	Acoustic beam interaction with a rigid sphere: The case of a first-order non-diffracting Bessel trigonometric beam. Journal of Sound and Vibration, 2011, 330, 6053-6060.	3.9	23
66	Axial acoustic radiation force of progressive cylindrical diverging waves on a rigid and a soft cylinder immersed in an ideal compressible fluid. Ultrasonics, 2011, 51, 523-526.	3.9	22
67	Instantaneous axial force of a high-order Bessel vortex beam of acoustic waves incident upon a rigid movable sphere. Ultrasonics, 2011, 51, 719-724.	3.9	8
68	Second-harmonic pressure generation of a non-diffracting acoustical high-order Bessel vortex beam of fractional type 1±. Ultrasonics, 2011, 51, 496-502.	3.9	1
69	Off-axial acoustic scattering of a high-order Bessel vortex beam by a rigid sphere. Wave Motion, 2011, 48, 392-400.	2.0	61
70	Radiation force of acoustical tweezers on a sphere: The case of a high-order Bessel beam of quasi-standing waves of variable half-cone angles. Applied Acoustics, 2010, 71, 470-472.	3.3	12
71	Transition from progressive to quasi-standing waves behavior of the radiation force of acoustic waves—Example of a high-order Bessel beam on a rigid sphere. Journal of Sound and Vibration, 2010, 329, 3319-3324.	3.9	13
72	Interaction of a high-order Bessel beam with a submerged spherical ultrasound contrast agent shell – Scattering theory. Ultrasonics, 2010, 50, 387-396.	3.9	21

#	Article	IF	CITATIONS
73	Axial time-averaged acoustic radiation force on a cylinder in a nonviscous fluid revisited. Ultrasonics, 2010, 50, 620-627.	3.9	37
74	Acoustic backscattering enhancements resulting from the interaction of an obliquely incident plane wave with an infinite cylinder. Ultrasonics, 2010, 50, 675-682.	3.9	20
75	Gegenbauer expansion to model the incident wave-field of a high-order Bessel vortex beam in spherical coordinates. Ultrasonics, 2010, 50, 541-543.	3.9	6
76	Vibro-acoustography imaging of permanent prostate brachytherapy seeds in an excised human prostate – Preliminary results and technical feasibility. Ultrasonics, 2009, 49, 389-394.	3.9	44
77	In vitro comparative study of vibro-acoustography versus pulse-echo ultrasound in imaging permanent prostate brachytherapy seeds. Ultrasonics, 2009, 49, 31-38.	3.9	38
78	Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere. Ultrasonics, 2009, 49, 794-798.	3.9	55
79	Comparison of continuous-wave (CW) and tone-burst (TB) excitation modes in vibro-acoustography: Application for the non-destructive imaging of flaws. Applied Acoustics, 2009, 70, 333-336.	3.3	18
80	Vibro-acoustography imaging applications for the prostate. , 2009, 2009, 4415-9.		1
81	Equivalence of expressions for the acoustic scattering of a progressive high-order bessel beam by an elastic sphere. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 1100-1103.	3.0	38
82	Langevin acoustic radiation force of a high-order bessel beam on a rigid sphere. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 1059-1064.	3.0	85
83	Acoustic radiation force on a sphere in standing and quasi-standing zero-order Bessel beam tweezers. Annals of Physics, 2008, 323, 1604-1620.	2.8	80
84	Investigating the absolute phase information in acoustic wave resonance scattering. Ultrasonics, 2008, 48, 209-219.	3.9	17
85	Acoustic scattering of a high-order Bessel beam by an elastic sphere. Annals of Physics, 2008, 323, 2840-2850.	2.8	80
86	Prostate Cryotherapy Monitoring Using Vibroacoustography: Preliminary Results of an <i>Ex Vivo</i> Study and Technical Feasibility. IEEE Transactions on Biomedical Engineering, 2008, 55, 2584-2592.	4.2	44
87	Theory of the acoustic radiation force exerted on a sphere by standing and quasistanding zero-order Bessel beam tweezers of variable half-cone angles. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 2469-2478.	3.0	35
88	Acoustic radiation force on coated cylinders in plane progressive waves. Journal of Sound and Vibration, 2007, 308, 190-200.	3.9	14
89	Acoustic radiation force due to incident plane-progressive waves on coated cylindrical shells immersed in ideal compressible fluids. Wave Motion, 2006, 43, 445-457.	2.0	23
90	Calculation of the acoustic radiation force on coated spherical shells in progressive and standing plane waves. Ultrasonics, 2006, 44, 244-258.	3.9	35

2

#	Article	IF	CITATIONS
91	Amplitude-modulated acoustic radiation force experienced by elastic and viscoelastic spherical shells in progressive waves. Ultrasonics, 2006, 44, 287-296.	3.9	13
92	Radiation force acting on an absorbing cylinder placed in an incident plane progressive acoustic field. Journal of Sound and Vibration, 2005, 284, 494-502.	3.9	21
93	Theoretical calculation of the modulated acoustic radiation force on spheres and cylinders in a standing plane wave-field. Physica D: Nonlinear Phenomena, 2005, 212, 66-81.	2.8	20
94	Acoustic radiation force acting on elastic and viscoelastic spherical shells placed in a plane standing wave field. Ultrasonics, 2005, 43, 681-691.	3.9	69
95	Acoustic radiation force acting on absorbing spherical shells. Wave Motion, 2005, 43, 12-19.	2.0	42
96	Dynamic acoustic radiation force acting on cylindrical shells: theory and simulations. Ultrasonics, 2005, 43, 435-445.	3.9	16
97	Chirp imaging vibro-acoustography for removing the ultrasound standing wave artifact. IEEE Transactions on Medical Imaging, 2005, 24, 1249-1255.	8.9	42
98	Improving the Use of Vibro-Acoustography forBrachytherapy Metal Seed Imaging:A Feasibility Study. IEEE Transactions on Medical Imaging, 2004, 23, 1-6.	8.9	73
99	Determination of object resonances by vibro-acoustography and their associated modes. Ultrasonics, 2004, 42, 537-543.	3.9	8

100 Using vibro-acoustography to detect brachytherapy metal seeds. , 0, , .