## Ivan Gitsov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1165077/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Enzymatic Synthesis and Antimicrobial Activity of Oligomer Analogues of Medicinal Biopolymers from Comfrey and Other Species of the Boraginaceae Family. Pharmaceutics, 2022, 14, 115.                                                     | 2.0 | 9         |
| 2  | Nano-Filamented Textile Sensor Platform with High Structure Sensitivity. ACS Applied Materials &<br>Interfaces, 2022, 14, 15391-15400.                                                                                                     | 4.0 | 6         |
| 3  | Reactive Cellu-mers—A Novel Approach to Improved Cellulose/Polymer Composites. Polymers, 2022, 14,<br>1670.                                                                                                                                | 2.0 | 3         |
| 4  | Polymerization Initiated by Graphite Intercalation Compounds Revisited: One-Pot Synthesis of Amphiphilic Pentablock Copolymers. Macromol, 2022, 2, 184-193.                                                                                | 2.4 | 2         |
| 5  | Conversion and removal strategies for microplastics in wastewater treatment plants and landfills.<br>Chemical Engineering Journal, 2021, 406, 126715.                                                                                      | 6.6 | 147       |
| 6  | Magnetically Responsive PA6 Microparticles with Immobilized Laccase Show High Catalytic Efficiency in the Enzymatic Treatment of Catechol. Catalysts, 2021, 11, 239.                                                                       | 1.6 | 10        |
| 7  | Novel Amphiphilic Dendronized Copolymers Formed by Enzyme-Mediated "Green―Polymerization.<br>Biomacromolecules, 2021, 22, 1706-1720.                                                                                                       | 2.6 | 8         |
| 8  | Biofilm Removal by Reversible Shape Recovery of the Substrate. ACS Applied Materials & Interfaces, 2021, 13, 17174-17182.                                                                                                                  | 4.0 | 7         |
| 9  | Hydroxyapatite-poly(d,l-lactide) Nanografts. Synthesis and Characterization as Bone Cement Additives.<br>Molecules, 2021, 26, 424.                                                                                                         | 1.7 | 7         |
| 10 | Polymer-Assisted Biocatalysis: Polyamide 4 Microparticles as Promising Carriers of Enzymatic<br>Function. Catalysts, 2020, 10, 767.                                                                                                        | 1.6 | 13        |
| 11 | Synthesis and Characterization of Zwitterionic Polymer Brush Functionalized Hydrogels with Ionic<br>Responsive Coefficient of Friction. Langmuir, 2020, 36, 3932-3940.                                                                     | 1.6 | 14        |
| 12 | A Single Enzyme Mediates the "Quasi-Living―Formation of Multiblock Copolymers with a Broad<br>Biomedical Potential. Biomacromolecules, 2020, 21, 2132-2146.                                                                                | 2.6 | 8         |
| 13 | Nonionic Amphiphilic Linear Dendritic Block Copolymers. Solvent-Induced Self-Assembly and<br>Morphology Tuning. Macromolecules, 2019, 52, 5563-5573.                                                                                       | 2.2 | 19        |
| 14 | Controlled ATRP Synthesis of Novel Linear-Dendritic Block Copolymers and Their Directed Self-Assembly in Breath Figure Arrays. Polymers, 2019, 11, 539.                                                                                    | 2.0 | 14        |
| 15 | Unprecedented Enzymatic Synthesis of Perfectly Structured Alternating Copolymers via "Green―<br>Reaction Cocatalyzed by Laccase and Lipase Compartmentalized within Supramolecular Complexes.<br>Biomacromolecules, 2019, 20, 927-936.     | 2.6 | 16        |
| 16 | Polymer-Assisted Biocatalysis: Effects of Macromolecular Architectures on the Stability and Catalytic<br>Activity of Immobilized Enzymes toward Water-Soluble and Water-Insoluble Substrates. ACS Omega,<br>2018, 3, 1700-1709.            | 1.6 | 22        |
| 17 | Thermosensitive Amphiphilic Janus Dendrimers with Embedded Metal Binding Sites. Synthesis and Self-Assembly. Macromolecules, 2018, 51, 5085-5100.                                                                                          | 2.2 | 15        |
| 18 | Decoration of Nanofibrous Paper Chemiresistors with Dendronized Nanoparticles toward<br>Structurally Tunable Negativeâ€Going Response Characteristics to Human Breathing and Sweating.<br>Advanced Materials Interfaces, 2017, 4, 1700380. | 1.9 | 15        |

Ινάν **Gitsov** 

| #  | Article                                                                                                                                                                                                                                                | IF         | CITATIONS           |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|
| 19 | Meet Our Regional Editor:. Current Organic Chemistry, 2015, 20, 119-119.                                                                                                                                                                               | 0.9        | 0                   |
| 20 | Synthesis and characterization of novel amphiphilic superâ€H copolymers with linear–dendritic architecture. Journal of Polymer Science Part A, 2015, 53, 178-182.                                                                                      | 2.5        | 6                   |
| 21 | "Synthesis of unnatural poly(amino acid)s and their dendritic derivatives by polymer-enhanced laccase complexes". , 2015, , .                                                                                                                          |            | 0                   |
| 22 | "Green―Synthesis of Unnatural Poly(Amino Acid)s with Zwitterionic Character and pH-Responsive<br>Solution Behavior, Mediated by Linear–Dendritic Laccase Complexes. Biomacromolecules, 2014, 15,<br>4082-4095.                                         | 2.6        | 21                  |
| 23 | "Click―Synthesis of Intrinsically Hydrophilic Dendrons and Dendrimers Containing Metal Binding<br>Moieties at Each Branching Unit. Macromolecules, 2014, 47, 2199-2213.                                                                                | 2.2        | 24                  |
| 24 | Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase. Chemical Papers, 2013, 67, .                                                          | 1.0        | 24                  |
| 25 | "Green―Synthesis of Bisphenol Polymers and Copolymers, Mediated by Supramolecular Complexes of<br>Laccase and Linear-Dendritic Block Copolymers. ACS Symposium Series, 2013, , 121-139.                                                                | 0.5        | 5                   |
| 26 | Synthesis and Self-Assembly of Linear-Dendritic Hybrid Polymers. , 2013, , 1-11.                                                                                                                                                                       |            | 0                   |
| 27 | Polymerâ€assisted biocatalysis: Unprecedented enzymatic oxidation of fullerene in aqueous medium.<br>Journal of Polymer Science Part A, 2012, 50, 119-126.                                                                                             | 2.5        | 33                  |
| 28 | Preparation and Characterization of Novel Amphiphilic Hydrogels with Covalently Attached Drugs and Fluorescent Markers. Macromolecules, 2010, 43, 10017-10030.                                                                                         | 2.2        | 65                  |
| 29 | Synthesis and Physical Properties of Reactive Amphiphilic Hydrogels Based on<br>Poly( <i>p</i> -chloromethylstyrene) and Poly(ethylene glycol): Effects of Composition and Molecular<br>Architecture. Macromolecules, 2010, 43, 3256-3267.             | 2.2        | 41                  |
| 30 | Synthesis and hydrolytic stability of poly(oxyethyleneâ€Hâ€phosphonate)s. Journal of Polymer Science<br>Part A, 2008, 46, 4130-4139.                                                                                                                   | 2.5        | 23                  |
| 31 | Hybrid linear dendritic macromolecules: From synthesis to applications. Journal of Polymer Science<br>Part A, 2008, 46, 5295-5314.                                                                                                                     | 2.5        | 160                 |
| 32 | Enzymatic Nanoreactors for Environmentally Benign Biotransformations. 1. Formation and Catalytic<br>Activity of Supramolecular Complexes of Laccase and Linearâ^'Dendritic Block Copolymers.<br>Biomacromolecules, 2008, 9, 804-811.                   | 2.6        | 70                  |
| 33 | Linear-Dendritic Supramolecular Complexes as Nanoscale Reaction Vessels for "Green―Chemistry.<br>Dielsâ^'Alder Reactions between Fullerene C <sub>60</sub> and Polycyclic Aromatic Hydrocarbons in<br>Aqueous Medium. Langmuir, 2008, 24, 11431-11441. | 1.6        | 60                  |
| 34 | Green Oxidation of Steroids in Nanoreactors Assembled from Laccase and Linear-Dendritic<br>Copolymers. ACS Symposium Series, 2008, , 110-128.                                                                                                          | 0.5        | 6                   |
| 35 | Smart polymer recycling: Synthesis of novel rigid polyurethanes using phosphorus-containing<br>oligomers formed by controlled degradation of microporous polyurethane elastomer. Journal of<br>Applied Polymer Science, 2007, 105, 302-308.            | 1.3        | 22                  |
| 36 | Immobilization of aminothiols on poly(oxyethyleneH-phosphonate)s and poly(oxyethylene) Tj ETQq0 0 0 rgBT                                                                                                                                               | Overlock 1 | 0 Tf 50 67 To<br>38 |

Polymer Science Part A, 2007, 45, 1349-1363.

Ivan Gitsov

| #  | Article                                                                                                                                                                                                                                                  | IF                | CITATIONS           |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
| 37 | Synthesis of novel asymmetric dendriticâ€linearâ€dendritic block copolymers via "living―anionic<br>polymerization of ethylene oxide initiated by dendritic macroinitiators. Journal of Polymer Science<br>Part A, 2007, 45, 5136-5148.                   | 2.5               | 47                  |
| 38 | Surface-Supported Bilayers with Transmembrane Proteins:Â Role of the Polymer Cushion Revisited.<br>Langmuir, 2006, 22, 10145-10151.                                                                                                                      | 1.6               | 45                  |
| 39 | Phosphorus-containing oligoamides obtained by a novel one-pot degradation of polyamide-6. Polymer<br>Degradation and Stability, 2006, 91, 778-788.                                                                                                       | 2.7               | 7                   |
| 40 | Novel materials for bioanalytical and biomedical applications: Environmental response and<br>binding/release capabilities of amphiphilic hydrogels with shape-persistent dendritic junctions.<br>Journal of Polymer Science Part A, 2005, 43, 4017-4029. | 2.5               | 47                  |
| 41 | Dendrimers - Nanoparticles with Precisely Engineered Surfaces. Current Organic Chemistry, 2005, 9, 1025-1051.                                                                                                                                            | 0.9               | 49                  |
| 42 | Nondestructive Regioselective Modification of Laccase by Linear-Dendritic Copolymers: Enhanced Oxidation of Benzo-α-Pyrene in Water. ACS Symposium Series, 2005, , 80-94.                                                                                | 0.5               | 12                  |
| 43 | A novel catalyst for the glycolysis of poly(ethylene terephthalate). Journal of Applied Polymer<br>Science, 2003, 90, 2301-2301.                                                                                                                         | 1.3               | 69                  |
| 44 | Novel Functionally Grafted Pseudo-Semi-interpenetrating Networks Constructed by Reactive<br>Linearâ^'Dendritic Copolymers1. Journal of the American Chemical Society, 2003, 125, 11228-11234.                                                            | 6.6               | 65                  |
| 45 | Linearâ^'Dendritic Poly(ester)-block-poly(ether)-block-poly(ester) ABA Copolymers Constructed by a<br>Divergent Growth Method1. Macromolecules, 2003, 36, 1068-1074.                                                                                     | 2.2               | 46                  |
| 46 | Amphiphilic Hydrogels with Highly Ordered Hydrophobic Dendritic Domains. ACS Symposium Series, 2002, , 218-232.                                                                                                                                          | 0.5               | 7                   |
| 47 | Amphiphilic Hydrogels Constructed by Poly(ethylene glycol) and Shape-Persistent Dendritic<br>Fragments1. Macromolecules, 2002, 35, 8418-8427.                                                                                                            | 2.2               | 59                  |
| 48 | Immobilization of Aminothiols on Poly(oxyalkylene phosphates). Formation of Poly(oxyethylene) Tj ETQq0 0 0 rg<br>Chemistry, 2002, 45, 5797-5801.                                                                                                         | BT /Overlo<br>2.9 | ck 10 Tf 50 3<br>45 |
| 49 | Linear—dendritic block copolymers. Advances in Dendritic Macromolecules, 2002, , 45-87.                                                                                                                                                                  | 0.6               | 21                  |
| 50 | A novel depolymerization route to phosphorus-containing oligocarbonates. Polymer, 2001, 42, 39-42.                                                                                                                                                       | 1.8               | 18                  |
| 51 | Profiles. Drug Discovery Today, 2001, 6, 108-109.                                                                                                                                                                                                        | 3.2               | 3                   |
| 52 | Micelles with highly branched nanoporous interior: Solution properties and binding capabilities of amphiphilic copolymers with linear dendritic architecture. Journal of Polymer Science Part A, 2000, 38, 2711-2727.                                    | 2.5               | 93                  |
| 53 | Hybrid Dendritic Capsules: Properties and Binding Capabilities of Amphiphilic Copolymers with Linear Dendritic Architecture. ACS Symposium Series, 2000, , 72-92.                                                                                        | 0.5               | 7                   |
| 54 | Synthesis of new hybrid macromolecules with cyclo-dendritic architecture. Chemical Communications, 2000, , 269-270.                                                                                                                                      | 2.2               | 14                  |

Ινάν Gitsov

| #  | Article                                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Hydrolysis of biodegradable polymers by superoxide ions. Journal of Polymer Science Part A, 1999, 37, 3558-3567.                                                                                                                                                                                                           | 2.5 | 27        |
| 56 | Modification of Surfaces and Interfaces by Non-covalent Assembly of Hybrid Linearâ^'Dendritic Block<br>Copolymers:Â Poly(benzyl ether) Dendrons as Anchors for Poly(ethylene glycol) Chains on Cellulose<br>or Polyester. Chemistry of Materials, 1999, 11, 1267-1274.                                                     | 3.2 | 60        |
| 57 | Importance of active-site reactivity and reaction conditions in the preparation of hyperbranched polymers by self-condensing vinyl polymerization: Highly branchedvs. linear poly[4-(chloromethyl)styrene] by metal-catalyzed ?living? radical polymerization. Journal of Polymer Science Part A. 1998. 36. 955-970.       | 2.5 | 225       |
| 58 | Double-Stage Convergent Approach for the Synthesis of Functionalized Dendritic Aliphatic Polyesters<br>Based on 2,2-Bis(hydroxymethyl)propionic Acid. Macromolecules, 1998, 31, 4061-4068.                                                                                                                                 | 2.2 | 313       |
| 59 | Importance of active-site reactivity and reaction conditions in the preparation of hyperbranched<br>polymers by self-condensing vinyl polymerization: Highly branched vs. linear<br>poly[4-(chloromethyl)styrene] by metal-catalyzed "living―radical polymerization. , 1998, 36, 955.                                      |     | 2         |
| 60 | Star-graft copolymers. Synthesis of amphiphilic graft copolymers with star-branched poly(oxyethylene) side chains. Journal of Polymer Science Part A, 1997, 35, 673-679.                                                                                                                                                   | 2.5 | 11        |
| 61 | Stimuli-Responsive Hybrid Macromolecules:Â Novel Amphiphilic Star Copolymers With Dendritic<br>Groups at the Periphery. Journal of the American Chemical Society, 1996, 118, 3785-3786.                                                                                                                                    | 6.6 | 200       |
| 62 | Dendrimers and Hyperbranched Polymers: Two Families of Three-Dimensional Macromolecules with<br>Similar but Clearly Distinct Properties. Journal of Macromolecular Science - Pure and Applied<br>Chemistry, 1996, 33, 1399-1425.                                                                                           | 1.2 | 260       |
| 63 | Molded Monolithic Rod of Macroporous Poly(styrene-co-divinylbenzene) as a Separation Medium for<br>HPLC of Synthetic Polymers:  "On-Column―PrecipitationⰒRedissolution Chromatography as an<br>Alternative to Size Exclusion Chromatography of Styrene Oligomers and Polymers. Analytical<br>Chemistry. 1996. 68. 315-321. | 3.2 | 126       |
| 64 | Nanoscopic supermolecules with linear-dendritic architecture: Their preparation and their supramolecular behavior. Macromolecular Symposia, 1995, 98, 441-465.                                                                                                                                                             | 0.4 | 50        |
| 65 | Self-Condensing Vinyl Polymerization: An Approach to Dendritic Materials. Science, 1995, 269, 1080-1083.                                                                                                                                                                                                                   | 6.0 | 820       |
| 66 | Dendrimers as macroinitiators for anionic ring-opening polymerization. Polymerization of É-caprolactone. Macromolecular Rapid Communications, 1994, 15, 387-393.                                                                                                                                                           | 2.0 | 107       |
| 67 | Novel Nanoscopic Architectures. Linear-Globular ABA Copolymers with Polyether Dendrimers as A<br>Blocks and Polystyrene as B Block. Macromolecules, 1994, 27, 7309-7315.                                                                                                                                                   | 2.2 | 108       |
| 68 | Solution and solid-state properties of hybrid linear-dendritic block copolymers. Macromolecules, 1993, 26, 6536-6546.                                                                                                                                                                                                      | 2.2 | 172       |
| 69 | Synthesis and properties of novel linear-dendritic block copolymers. Reactivity of dendritic macromolecules toward linear polymers. Macromolecules, 1993, 26, 5621-5627.                                                                                                                                                   | 2.2 | 171       |
| 70 | Poly(ethylene oxide) gel as a novel polymerization medium anionic polymerization of methyl<br>methacrylate. Makromolekulare Chemie Macromolecular Symposia, 1993, 67, 157-173.                                                                                                                                             | 0.6 | 5         |
| 71 | Novel Polyether Copolymers Consisting of Linear and Dendritic Blocks. Angewandte Chemie<br>International Edition in English, 1992, 31, 1200-1202.                                                                                                                                                                          | 4.4 | 221       |
| 72 | Synthesis and evaluation of methyl methacrylate copolymers and terpolymers as electron beam resists. II. Methyl methacrylate copolymers and terpolymers containing aromatic rings. Journal of Applied Polymer Science, 1992, 46, 1631-1638.                                                                                | 1.3 | 9         |

Ivan Gitsov

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Neuartige Polyethercopolymere mit einer linearen Zentraleinheit und dendritischen Endgruppen.<br>Angewandte Chemie, 1992, 104, 1282-1285.                                                                                                | 1.6 | 51        |
| 74 | Synthesis of novolac resins: 2. Influence of the reaction medium on the properties of the novolac oligomers. Polymer, 1991, 32, 3067-3070.                                                                                               | 1.8 | 8         |
| 75 | Copolymerization of new pyrazolone-containing monomers with certain vinyl comonomers. Journal of Polymer Science Part A, 1991, 29, 889-895.                                                                                              | 2.5 | 0         |
| 76 | Anionic polymerization of lactones initiated by alkali graphitides. V. Initiation mechanism and nature of the active centers. Journal of Polymer Science Part A, 1990, 28, 2115-2126.                                                    | 2.5 | 11        |
| 77 | Synthesis and evaluation of methyl methacrylate copolymers and terpolymers as electron-beam<br>resists. I. Poly(methyl methacrylate–methacrylic acid–methacryloyl chloride). Journal of Applied<br>Polymer Science, 1990, 41, 2705-2710. | 1.3 | 2         |
| 78 | Anionic polymerization of lactones initiated by alkali graphitides. IV. Copolymerization of<br>É>-caprolactone initiated by KC24. Journal of Polymer Science Part A, 1989, 27, 639-646.                                                  | 2.5 | 3         |
| 79 | Copolymerization of styrene with some oxiranes initiated by KC24. European Polymer Journal, 1986, 22, 407-412.                                                                                                                           | 2.6 | 3         |
| 80 | Cationic polymerization initiated by intercalation compounds of lewis acids. II. Initiating ability and mechanism of action of the initiators. Journal of Polymer Science Part A, 1986, 24, 155-165.                                     | 2.5 | 7         |
| 81 | Cationic polymerization initiated by intercalation compounds of lewis acids. II. Initiating ability and mechanism of action of the initiators. Journal of Polymer Science: Polymer Chemistry Edition, 1986, 24, 155-165.                 | 0.8 | 3         |
| 82 | Separation and characterization of ?-caprolactone oligomers by gel permeation chromatography.<br>Polymer Bulletin, 1985, 13, 285.                                                                                                        | 1.7 | 14        |
| 83 | Anionic polymerization of lactones initiated by alkali graphitides. III. Polymerization of δ-valerolactone<br>initiated by KC24. Journal of Polymer Science: Polymer Chemistry Edition, 1984, 22, 905-910.                               | 0.8 | 9         |
| 84 | Anionic polymerization of lactones initiated by alkali graphitides. I. Polymerization of ε-caprolactone<br>initiated by KC24. Journal of Polymer Science: Polymer Chemistry Edition, 1983, 21, 923-936.                                  | 0.8 | 18        |
| 85 | Anionic polymerization of lactones initiated by alkali graphitides. II. Changes in the KC24 structure during polymerization of lactones. Journal of Polymer Science: Polymer Chemistry Edition, 1983, 21, 937-941.                       | 0.8 | 7         |
| 86 | Cationic polymerization initiated by intercalation compounds of Lewis acids. Polymer Bulletin, 1983, 10, 487-490.                                                                                                                        | 1.7 | 8         |
| 87 | Mechanism of the anionic polymerization of lactones, initiated by intercalation graphite compounds.<br>Polymer Bulletin, 1981, 4, 97-103.                                                                                                | 1.7 | 13        |