Jyaysi Desai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11648298/publications.pdf

Version: 2024-02-01

331670 677142 2,382 22 21 22 citations h-index g-index papers 22 22 22 3930 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death and Differentiation, 2019, 26, 395-408.	11.2	295
2	Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nature Communications, 2016, 7, 10274.	12.8	220
3	Histones and Neutrophil Extracellular Traps Enhance Tubular Necrosis and Remote Organ Injury in Ischemic AKI. Journal of the American Society of Nephrology: JASN, 2017, 28, 1753-1768.	6.1	220
4	Neutrophils and Neutrophil Extracellular Traps Drive Necroinflammation in COVID-19. Cells, 2020, 9, 1383.	4.1	220
5	PMA and crystalâ€induced neutrophil extracellular trap formation involves RIPK1â€RIPK3â€MLKL signaling. European Journal of Immunology, 2016, 46, 223-229.	2.9	200
6	Molecular Pathophysiology of Gout. Trends in Molecular Medicine, 2017, 23, 756-768.	6.7	165
7	The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1–mediated tissue injury. Kidney International, 2018, 93, 656-669.	5.2	159
8	Neutrophil Extracellular Traps (NETs) Take the Central Stage in Driving Autoimmune Responses. Cells, 2020, 9, 915.	4.1	136
9	Particles of different sizes and shapes induce neutrophil necroptosis followed by the release of neutrophil extracellular trap-like chromatin. Scientific Reports, 2017, 7, 15003.	3.3	97
10	Matters of life and death. How neutrophils die or survive along NET release and is "NETosisâ€Â=Ânecroptosis?. Cellular and Molecular Life Sciences, 2016, 73, 2211-2219.	5.4	90
11	Mitochondria Permeability Transition versus Necroptosis in Oxalate-Induced AKI. Journal of the American Society of Nephrology: JASN, 2019, 30, 1857-1869.	6.1	81
12	Hyperoxaluria Requires TNF Receptors to Initiate Crystal Adhesion and Kidney Stone Disease. Journal of the American Society of Nephrology: JASN, 2017, 28, 761-768.	6.1	78
13	Oxalate-induced chronic kidney disease with its uremic and cardiovascular complications in C57BL/6 mice. American Journal of Physiology - Renal Physiology, 2016, 310, F785-F795.	2.7	71
14	CXCL12 blockade preferentially regenerates lostÂpodocytes in cortical nephrons by targetingÂanÂintrinsic podocyte-progenitor feedback mechanism. Kidney International, 2018, 94, 1111-1126.	5.2	69
15	Activated platelets induce MLKL-driven neutrophil necroptosis and release of neutrophil extracellular traps in venous thrombosis. Cell Death Discovery, 2018, 4, 6.	4.7	52
16	Phagocytosis of environmental or metabolic crystalline particles induces cytotoxicity by triggering necroptosis across a broad range of particle size and shape. Scientific Reports, 2017, 7, 15523.	3.3	45
17	How Kidney Cell Death Induces Renal Necroinflammation. Seminars in Nephrology, 2016, 36, 162-173.	1.6	41
18	The Neurogenic Potential of Astrocytes Is Regulated by Inflammatory Signals. Molecular Neurobiology, 2016, 53, 3724-3739.	4.0	36

#	Article	IF	CITATIONS
19	Lupus nephritis. Current Opinion in Nephrology and Hypertension, 2014, 23, 211-217.	2.0	33
20	Regulated necrosis-related molecule mRNA expression in humans and mice and in murine acute tissue injury and systemic autoimmunity leading to progressive organ damage, and progressive fibrosis. Bioscience Reports, 2016, 36, .	2.4	32
21	Neutrophil extracellular traps in tissue pathology. Histology and Histopathology, 2017, 32, 203-213.	0.7	26
22	Murine Double Minute-2 Inhibition Ameliorates Established Crescentic Glomerulonephritis. American Journal of Pathology, 2016, 186, 1442-1453.	3.8	16