Chuan Fa Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1164769/publications.pdf

Version: 2024-02-01

96 paper	S	4,457 citations	32 h-index	1	63 g-index
102 all doc		101 docs citations	101 times ranked		4371 citing authors

#	Article	IF	CITATIONS
1	Lysine Acetylation Is a Highly Abundant and Evolutionarily Conserved Modification in Escherichia Coli. Molecular and Cellular Proteomics, 2009, 8, 215-225.	3.8	450
2	Peptide synthesis using unprotected peptides through orthogonal coupling methods Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 12485-12489.	7.1	249
3	Dual Native Chemical Ligation at Lysine. Journal of the American Chemical Society, 2009, 131, 13592-13593.	13.7	246
4	Peptide segment ligation strategy without use of protecting groups Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 6584-6588.	7.1	202
5	Metabolic Regulation of Protein N-Alpha-Acetylation by Bcl-xL Promotes Cell Survival. Cell, 2011, 146, 607-620.	28.9	185
6	The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association. Nucleic Acids Research, 2011, 39, 1680-1691.	14.5	178
7	Chemical Ligation Approach To Form a Peptide Bond between Unprotected Peptide Segments. Concept and Model Study. Journal of the American Chemical Society, 1994, 116, 4149-4153.	13.7	176
8	A Direct Method for Site‧pecific Protein Acetylation. Angewandte Chemie - International Edition, 2011, 50, 9611-9614.	13.8	124
9	Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA. Nucleic Acids Research, 2019, 47, e130-e130.	14.5	124
10	Structure of a human DNA repair protein UBA domain that interacts with HIV-1 Vpr. Nature Structural Biology, 1998, 5, 1042-1047.	9.7	121
11	Peptidyl <i>N</i> , <i>N</i> -Bis(2-mercaptoethyl)-amides as Thioester Precursors for Native Chemical Ligation. Organic Letters, 2011, 13, 386-389.	4.6	100
12	Butelase-mediated cyclization and ligation of peptides and proteins. Nature Protocols, 2016, 11, 1977-1988.	12.0	95
13	Orthogonal Ligation of Unprotected Peptide Segments through Pseudoproline Formation for the Synthesis of HIV-1 Protease Analogs,. Journal of the American Chemical Society, 1996, 118, 307-312.	13.7	86
14	Improved solid phase synthesis of C-terminal peptide aldehydes. Tetrahedron Letters, 1995, 36, 7871-7874.	1.4	82
15	Siteâ€Specific Nâ€Terminal Labeling of Peptides and Proteins using Butelase 1 and Thiodepsipeptide. Angewandte Chemie - International Edition, 2015, 54, 15694-15698.	13.8	82
16	Structural determinants for peptide-bond formation by asparaginyl ligases. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11737-11746.	7.1	81
17	Synthesis of K48-linked diubiquitin using dual native chemical ligation at lysine. Chemical Communications, 2010, 46, 7199.	4.1	76
18	Protein C-Terminal Modification through Thioacid/Azide Amidation. Bioconjugate Chemistry, 2009, 20, 197-200.	3.6	68

#	Article	IF	CITATIONS
19	Butelase-mediated synthesis of protein thioesters and its application for tandem chemoenzymatic ligation. Chemical Communications, 2015, 51, 17289-17292.	4.1	68
20	Enzymatic Engineering of Live Bacterial Cell Surfaces Using Butelaseâ€1. Angewandte Chemie - International Edition, 2017, 56, 7822-7825.	13.8	63
21	7-Deazaguanine modifications protect phage DNA from host restriction systems. Nature Communications, 2019, 10, 5442.	12.8	63
22	Influence of Histone Tails and H4 Tail Acetylations on Nucleosome–Nucleosome Interactions. Journal of Molecular Biology, 2011, 414, 749-764.	4.2	62
23	Acyl disulfide-mediated intramolecular acylation for orthogonal coupling between unprotected peptide segments. Mechanism and application. Tetrahedron Letters, 1996, 37, 933-936.	1.4	57
24	Regulation of Nucleosome Stacking and Chromatin Compaction by the Histone H4 N-Terminal Tail–H2A Acidic Patch Interaction. Journal of Molecular Biology, 2017, 429, 2075-2092.	4.2	56
25	Histone H4 lysine 20 mono-methylation directly facilitates chromatin openness and promotes transcription of housekeeping genes. Nature Communications, 2021, 12, 4800.	12.8	56
26	Auxiliary-Directed Pd-Catalyzed γ-C(sp ³)–H Bond Activation of α-Aminobutanoic Acid Derivatives. Organic Letters, 2015, 17, 6094-6097.	4.6	50
27	Design, Synthesis, and Biological Evaluation of Membrane-Active Bakuchiol Derivatives as Effective Broad-Spectrum Antibacterial Agents. Journal of Medicinal Chemistry, 2021, 64, 5603-5619.	6.4	49
28	High-resolution HDX-MS reveals distinct mechanisms of RNA recognition and activation by RIG-I and MDA5. Nucleic Acids Research, 2015, 43, 1216-1230.	14.5	45
29	Synthesis of 4-mercapto-l-lysine derivatives: Potential building blocks for sequential native chemical ligation. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6268-6271.	2.2	40
30	Butelase-Mediated Ligation as an Efficient Bioconjugation Method for the Synthesis of Peptide Dendrimers. Bioconjugate Chemistry, 2016, 27, 2592-2596.	3.6	40
31	Native chemical ubiquitination using a genetically incorporated azidonorleucine. Chemical Communications, 2014, 50, 7971-7974.	4.1	37
32	Semisynthetic UbH2A reveals different activities of deubiquitinases and inhibitory effects of H2A K119 ubiquitination on H3K36 methylation in mononucleosomes. Organic and Biomolecular Chemistry, 2016, 14, 835-839.	2.8	36
33	Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19126-19135.	7.1	36
34	Identification and Characterization of Roseltide, a Knottin-type Neutrophil Elastase Inhibitor Derived from Hibiscus sabdariffa. Scientific Reports, 2016, 6, 39401.	3.3	35
35	Role of remodeling and spacing factor 1 in histone H2A ubiquitination-mediated gene silencing. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7949-E7958.	7.1	35
36	N-to-C Sequential Ligation Using Peptidyl N,N-Bis(2-mercaptoethyl)amide Building Blocks. Organic Letters, 2012, 14, 374-377.	4.6	31

#	Article	IF	Citations
37	5-Methylisoxazole-3-carboxamide-Directed Palladium-Catalyzed γ-C(sp ³)–H Acetoxylation and Application to the Synthesis of γ-Mercapto Amino Acids for Native Chemical Ligation. Organic Letters, 2016, 18, 2696-2699.	4.6	30
38	Facile Synthesis of Peptidyl Salicylaldehyde Esters and Its Use in Cyclic Peptide Synthesis. Organic Letters, 2013, 15, 5182-5185.	4.6	29
39	Turning an Asparaginyl Endopeptidase into a Peptide Ligase. ACS Catalysis, 2020, 10, 8825-8834.	11.2	29
40	Lanthionine macrocyclization by <i>in situ</i> activation of serine. Chemical Biology and Drug Design, 1998, 51, 432-436.	1.1	27
41	The Influence of Ionic Environment and Histone Tails on Columnar Order of Nucleosome Core Particles. Biophysical Journal, 2016, 110, 1720-1731.	0.5	27
42	Thienopyrimidinone Derivatives That Inhibit Bacterial tRNA (Guanine37- $\langle i \rangle N < i \rangle < Site with a Tyrosine-Flipping Mechanism. Journal of Medicinal Chemistry, 2019, 62, 7788-7805.$	6.4	27
43	Ambient ionization MS for bioanalysis: recent developments and challenges. Bioanalysis, 2015, 7, 1901-1923.	1.5	26
44	Reduction of mNAT1/hNAT2 Contributes to Cerebral Endothelial Necroptosis and Aβ Accumulation in Alzheimer's Disease. Cell Reports, 2020, 33, 108447.	6.4	26
45	Total chemical and semisynthetic approaches for the preparation of ubiquitinated proteins and their applications. Science China Chemistry, 2018, 61, 251-265.	8.2	25
46	PARP1 exhibits enhanced association and catalytic efficiency with $\hat{I}^3H2A.X$ -nucleosome. Nature Communications, 2019, 10, 5751.	12.8	25
47	pH-Controlled Protein Orthogonal Ligation Using Asparaginyl Peptide Ligases. Journal of the American Chemical Society, 2021, 143, 8704-8712.	13.7	25
48	A Simple Method for Preparing Peptide Câ€Terminal Thioacids and Their Application in Sequential Chemoenzymatic Ligation. ChemBioChem, 2008, 9, 1052-1056.	2.6	24
49	Specificity and formation of unusual amino acids of an amide ligation strategy for unprotected peptides. International Journal of Peptide and Protein Research, 1995, 45, 209-216.	0.1	24
50	ISWI Remodelling of Physiological Chromatin Fibres Acetylated at Lysine 16 of Histone H4. PLoS ONE, 2014, 9, e88411.	2.5	24
51	Thiazolidine-Masked $\hat{I}\pm$ -Oxo Aldehyde Functionality for Peptide and Protein Modification. Bioconjugate Chemistry, 2017, 28, 325-329.	3.6	24
52	Immobilization and Intracellular Delivery of Circular Proteins by Modifying a Genetically Incorporated Unnatural Amino Acid. Bioconjugate Chemistry, 2018, 29, 2170-2175.	3.6	22
53	Application of paper spray–MS in PK studies using sunitinib and benzethonium as model compounds. Bioanalysis, 2015, 7, 413-423.	1.5	21
54	Subtilisin-Catalyzed Synthesis of Amino Acid and Peptide Esters. Application in a Two-Step Enzymatic Ligation Strategy. Organic Letters, 2001, 3, 4157-4159.	4.6	20

#	Article	IF	Citations
55	Chemical and Enzymatic Strategies for Bacterial and Mammalian Cell Surface Engineering. Chemistry - A European Journal, 2018, 24, 8042-8050.	3.3	20
56	Tagging Transferrin Receptor with a Disulfide FRET Probe To Gauge the Redox State in Endosomal Compartments. Analytical Chemistry, 2020, 92, 12460-12466.	6.5	20
57	Siteâ€Specific Nâ€Terminal Labeling of Peptides and Proteins using Butelase 1 and Thiodepsipeptide. Angewandte Chemie, 2015, 127, 15920-15924.	2.0	18
58	Genetic incorporation of 1,2-aminothiol functionality for site-specific protein modification via thiazolidine formation. Organic and Biomolecular Chemistry, 2016, 14, 5282-5285.	2.8	18
59	Solid-phase synthesis of peptide thioacids through hydrothiolysis of resin-bound peptide thioesters. Tetrahedron Letters, 2008, 49, 6122-6125.	1.4	17
60	Synthesis of histone H3 proteins by a thioacid capture ligation strategy. Chemical Communications, 2011, 47, 1746-1748.	4.1	17
61	<i>N</i> â€Linked Glycosyl Auxiliaryâ€Mediated Native Chemical Ligation on Aspartic Acid: Application towards <i>N</i> â€Glycopeptide Synthesis. Angewandte Chemie - International Edition, 2016, 55, 10363-10367.	13.8	17
62	Progress in Chemical Synthesis of Peptides and Proteins. Transactions of Tianjin University, 2017, 23, 401-419.	6.4	17
63	Engineering protein theranostics using bio-orthogonal asparaginyl peptide ligases. Theranostics, 2021, 11, 5863-5875.	10.0	17
64	An Enzymatic Approach to the Synthesis of Peptide Thioesters: Mechanism and Scope. ChemBioChem, 2007, 8, 1512-1515.	2.6	16
65	A new safety-catch protecting group and linker for solid-phase synthesis. Tetrahedron Letters, 2010, 51, 3218-3220.	1.4	16
66	Chemical Methods for Protein Ubiquitination. Topics in Current Chemistry, 2014, 362, 89-106.	4.0	15
67	Facilitating Subtiligase-Catalyzed Peptide Ligation Reactions by Using Peptide Thioester Substrates. Organic Letters, 2018, 20, 6691-6694.	4.6	15
68	Modulating the Hybridization Property of PNA with a Peptoid-Like Side Chain. Organic Letters, 2009, 11, 2329-2332.	4.6	14
69	Peptide Weinreb amide derivatives as thioester precursors for native chemical ligation. Organic and Biomolecular Chemistry, 2017, 15, 2491-2496.	2.8	14
70	Enzymatic Engineering of Live Bacterial Cell Surfaces Using Butelaseâ€1. Angewandte Chemie, 2017, 129, 7930-7933.	2.0	12
71	Characterization and application of natural and recombinant butelase-1 to improve industrial enzymes by end-to-end circularization. RSC Advances, 2021, 11, 23105-23112.	3.6	12
72	Butelase 1-Mediated Ligation of Peptides and Proteins. Methods in Molecular Biology, 2019, 2012, 83-109.	0.9	11

#	Article	IF	Citations
73	Synthesis, conformation, and antibody recognition of peptides built of the sequence of the flap of human renin. Tetrahedron, 1988, 44, 675-683.	1.9	10
74	Preparation and study of derivatives and analogues of the phencyclidine molecule possessing immunosuppressive properties in vitro. European Journal of Medicinal Chemistry, 1990, 25, 609-615.	5. 5	10
75	A comparison of folding techniques in the chemical synthesis of the epidermal growth factor-like domain in neu differentiation factor $\hat{l}\pm/\hat{l}^2$. Chemical Biology and Drug Design, 2000, 55, 359-371.	1.1	10
76	The legumain McPAL1 from Momordica cochinchinensis is a highly stable Asx-specific splicing enzyme. Journal of Biological Chemistry, 2021, 297, 101325.	3.4	9
77	Subtiligase as a hydrothiolase for the synthesis of peptide thioacids. Tetrahedron Letters, 2008, 49, 2891-2894.	1.4	7
78	Chemical synthesis of N-peptidyl 2-pyrrolidinemethanethiol for peptide ligation. Tetrahedron Letters, 2013, 54, 3777-3780.	1.4	7
79	Thiazolidin-5-imine Formation as a Catalyst-Free Bioorthogonal Reaction for Protein and Live Cell Labeling. Organic Letters, 2018, 20, 7790-7793.	4.6	7
80	Asparaginyl Endopeptidase-Mediated Protein C-Terminal Hydrazinolysis for the Synthesis of Bioconjugates. Bioconjugate Chemistry, 2022, 33, 238-247.	3.6	6
81	Synthesis of a symmetric branched peptide. Assembly of a cyclic peptide on a small tetraacetate template. Chemical Communications, 1997, , 1619-1620.	4.1	5
82	Assessment of paper tip angular position, carryover, matrix effects and dried blood spot storage effect on paper spray mass spectrometry. Analytical Methods, 2020, 12, 747-757.	2.7	5
83	N γ â∈Hydroxyasparagine: A Multifunctional Unnatural Amino Acid That is a Good P1 Substrate of Asparaginyl Peptide Ligases. Angewandte Chemie - International Edition, 2021, 60, 22207-22211.	13.8	5
84	Vypal2: A Versatile Peptide Ligase for Precision Tailoring of Proteins. International Journal of Molecular Sciences, 2022, 23, 458.	4.1	5
85	<i>N</i> â€Linked Glycosyl Auxiliaryâ€Mediated Native Chemical Ligation on Aspartic Acid: Application towards <i>N</i> â€Glycopeptide Synthesis. Angewandte Chemie, 2016, 128, 10519-10523.	2.0	4
86	Site-Specific Protein Modifications by an Engineered Asparaginyl Endopeptidase from Viola canadensis. Frontiers in Chemistry, 2021, 9, 768854.	3.6	3
87	PAL-Mediated Ligation for Protein and Cell-Surface Modification. Methods in Molecular Biology, 2022, , 177-193.	0.9	3
88	A new method of N to C sequential ligation using thioacid capture ligation and native chemical ligation. Royal Society Open Science, 2018, 5, 172455.	2.4	2
89	Investigating Glyoxylate-Mediated Transamination Using Dipeptide Arrays and Proteomic Peptide Mixtures. Bioconjugate Chemistry, 2018, 29, 3285-3292.	3.6	1
90	Frontispiece: Chemical and Enzymatic Strategies for Bacterial and Mammalian Cell Surface Engineering. Chemistry - A European Journal, 2018, 24, .	3.3	1

#	Article	IF	CITATIONS
91	N γ â€Hydroxyasparagine: A Multifunctional Unnatural Amino Acid That is a Good P1 Substrate of Asparaginyl Peptide Ligases. Angewandte Chemie, 2021, 133, 22381-22385.	2.0	1
92	The Effectcs of Histone H4 Acetylations in Nucleosome-Nucleosome Interactions and on Chromatin Folding and Fibre-Fibre Association. Biophysical Journal, 2012, 102, 481a.	0.5	0
93	Interactions and Stacking in Ordered Mononucleosomes and Folded Chromatin: Effects of Histone Tail Modifications. Biophysical Journal, 2014, 106, 74a.	0.5	0
94	Immuno-chemical Recognition of Synthetic Peptides Based on the Sequence and Three-dimensional Structure of Human Renin: An Immuno-control of Renin Activity. , 1989, , 423-430.		0
95	Synthesis of a fully active HIV-1 protease analogue by a chemical ligation approach. , 1995, , 23-27.		0
96	Intramolecular orthogonal ligation for the synthesis of cyclic peptides. , 2002, , 235-236.		0