List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/116476/publications.pdf Version: 2024-02-01

		117619	133244
122	4,013	34	59
papers	citations	h-index	g-index
137	137	137	2750
all docs	docs citations	times ranked	citing authors

ΙΟΗΝ Τ ΟΡΛΝΤ

#	Article	IF	CITATIONS
1	Reminiscences with Martin P. Seah. Surface and Interface Analysis, 2022, 54, 294-305.	1.8	1
2	Nanoscale-Thick Thin Films of High-Density HfO ₂ for Bulk-like Optical Responses. ACS Applied Nano Materials, 2021, 4, 10836-10844.	5.0	8
3	Surface chemistry and microstructure of metallic biomaterials for hip and knee endoprostheses. Applied Surface Science, 2018, 427, 584-593.	6.1	54
4	Tailoring electrical and optical properties of Al-doped ZnO thin films grown at room temperature by reactive magnetron co-sputtering: From band gap to near infrared. Optical Materials, 2018, 84, 146-157.	3.6	23
5	Reactive co-sputtering of hematite doped silica (Fe2O3-SiO2) thin films. Journal of Alloys and Compounds, 2017, 708, 947-954.	5.5	6
6	Hybrid co-deposition of molybdenum doped niobium pentoxide (NbxMoyOz) thin films. Journal of Alloys and Compounds, 2016, 681, 350-358.	5.5	6
7	Molybdenum Oxides Deposited by Modulated Pulse Power Magnetron Sputtering: Stoichiometry as a Function of Process Parameters. Journal of Electronic Materials, 2015, 44, 3677-3686.	2.2	6
8	Optical and structural properties of co-sputtered Cu-Si-O and Cu-Ge-O thin films (Presentation) Tj ETQq0 0 0 rgB	T /Overloc	:k 10 Tf 50 46
9	Hybrid co-deposition of mixed-valent molybdenum–germanium oxides (MoxGeyOz): A route to tunable optical transmission. Thin Solid Films, 2015, 590, 248-259.	1.8	6
10	Effect of W–Ti target composition on the surface chemistry and electronic structure of WO3–TiO2 films made by reactive sputtering. Applied Surface Science, 2015, 353, 728-734.	6.1	21
11	Optical and chemical properties of mixed-valent rhenium oxide films synthesized by reactive DC magnetron sputtering. Optical Materials, 2015, 45, 191-196.	3.6	19
12	Thermal and thermomechanical behavior of amino functionalized and metal decorated MWCNTs/PMMA nanocomposite films. Polymer Composites, 2014, 35, 1807-1817.	4.6	3
13	Correlation between optical properties and chemical composition of sputter-deposited germanium oxide (GeOx) films. Optical Materials, 2014, 36, 1177-1182.	3.6	31
14	Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films. Applied Surface Science, 2014, 292, 74-85.	6.1	53
15	Metal Cation Cross-Linked Nanocellulose Hydrogels as Tissue Engineering Substrates. ACS Applied Materials & Interfaces, 2014, 6, 18502-18510.	8.0	107
16	Chemical bonding, optical constants, and electrical resistivity of sputter-deposited gallium oxide thin films. Journal of Applied Physics, 2014, 115, .	2.5	146
17	Investigation of maple-deposited DNA films for graphene-based device applications. , 2013, , .		1

18Improved Dehydrogenation Properties of Ti-Doped LiAlH4: Role of Ti Precursors. Journal of Physical
Chemistry C, 2012, 116, 21886-21894.3.132

2

#	Article	IF	CITATIONS
19	Characterisation of the surface microstructure of a meltâ€spun Niâ€Ti shape memory ribbon. Surface and Interface Analysis, 2012, 44, 997-1000.	1.8	1
20	Advance polymeric carbon nanocomposite films with enhanced thermoâ€mechanical properties. Polymer Composites, 2011, 32, 1757-1765.	4.6	6
21	Surface oxygen in the growth of plasma polymerised thin films. Vacuum, 2011, 85, 1098-1101.	3.5	1
22	Catalytic influence of Ni-based additives on the dehydrogenation properties of ball milled MgH ₂ . Journal of Materials Research, 2011, 26, 2725-2734.	2.6	9
23	Densification of Plasma Polymerized TiOxCyNz Films with Air Exposure. , 2010, , .		Ο
24	Report on the 47th IUVSTA Workshop â€~Angleâ€Resolved XPS: the current status and future prospects for angleâ€resolved XPS of nano and subnano films'. Surface and Interface Analysis, 2009, 41, 840-857.	1.8	40
25	XPS study of duplex stainless steel oxidized by oxygen atoms. Corrosion Science, 2009, 51, 827-832.	6.6	70
26	Surface oxygen in plasma polymerized films. Journal of Materials Chemistry, 2009, 19, 2234.	6.7	20
27	Plasma polymerized ferrocene films. Polymer, 2008, 49, 4042-4045.	3.8	26
28	PECVD Siloxane and Fluorineâ€Based Copolymer Thin Films. Chemical Vapor Deposition, 2008, 14, 286-291.	1.3	10
29	Plasma enhanced chemical vapor deposition of high refractive index polymer films. Proceedings of SPIE, 2008, , .	0.8	1
30	The relationship between chemical structure and dielectric properties of plasma-enhanced chemical vapor deposited polymer thin films. Thin Solid Films, 2007, 515, 3513-3520.	1.8	50
31	Analysis of Surfaces and Thin Films by Using Auger Electron Spectroscopy and X-ray Photoelectron Spectroscopy. Journal of the Korean Physical Society, 2007, 51, 925.	0.7	4
32	The growth and characterization of photonic thin films. Vacuum, 2005, 80, 12-19.	3.5	17
33	The growth and chemical structure of thin photonic films formed from plasma copolymerization. Part II. Effect of monomer feed location. Polymer, 2005, 46, 8178-8184.	3.8	14
34	The growth and chemical structure of thin photonic films formed from plasma copolymerization: I. Effect of monomer feed ratio. Polymer, 2004, 45, 8475-8483.	3.8	17
35	Variable Refractive Index Polymer Thin Films Prepared by Plasma Copolymerization. Chemistry of Materials, 2004, 16, 1292-1297.	6.7	34
36	Plasma Polymerized Multi-Layered Photonic Films. Chemistry of Materials, 2003, 15, 340-347.	6.7	47

#	Article	IF	CITATIONS
37	History of the annual Symposium on Applied Surface Analysis. Surface and Interface Analysis, 2003, 35, 1023-1027.	1.8	Ο
38	Polyurethane/Polysiloxane Ceramer Coatings: Evaluation of Corrosion Protection. Macromolecular Materials and Engineering, 2002, 287, 470.	3.6	48
39	Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys. Surface and Coatings Technology, 2002, 155, 208-213.	4.8	183
40	An XPS study of cerium dopants in sol–gel coatings for aluminum 2024-T3. Surface and Coatings Technology, 2001, 140, 11-15.	4.8	180
41	Plasma polymerized hexamethyldisiloxane (HMDS) barrier layers. Polymer, 2001, 42, 7215-7219.	3.8	9
42	An organically modified zirconate film as a corrosion-resistant treatment for aluminum 2024-T3. Progress in Organic Coatings, 2001, 41, 287-293.	3.9	101
43	Electrostatic self-assembly of sulfonated C60-porphyrin complexes on chitosan thin films. Thin Solid Films, 2000, 372, 85-93.	1.8	18
44	Surface Analysis of Various Methods of Preparing Al 2024-T3 Surfaces for Painting. Corrosion, 2000, 56, 395-400.	1.1	13
45	Cathodoluminescence, microstructure, and morphology of tensile-strained AlxGa(1â^'x)N epitaxial films grown by gas source molecular beam epitaxy. Journal of Applied Physics, 1999, 86, 3120-3128.	2.5	6
46	Stress, Microstructure and Temperature Stability of Reactive Sputter Deposited Ta(N) Thin Films. Materials Research Society Symposia Proceedings, 1999, 594, 427.	0.1	1
47	Applications of Reactive Gas Plasma Cleaning Technology in Minimizing Contamination Of Specimens During Transmission and Analytical Electron Microscopy. Materials Research Society Symposia Proceedings, 1997, 480, 127.	0.1	8
48	Surface Science Aspects of Contamination in Tem Sample Preparation. Materials Research Society Symposia Proceedings, 1997, 480, 49.	0.1	10
49	Characterization of chitosan and rare-earth-metal-ion doped chitosan films. Macromolecular Chemistry and Physics, 1997, 198, 1561-1578.	2.2	34
50	Phase transformation of sputter deposited tungsten thin films with Aâ€15 structure. Journal of Applied Physics, 1996, 79, 9134-9141.	2.5	92
51	Growth study of chemical beam epitaxy of GaNxP1 â^' x using NH3 and tertiarybutylphosphine. Journal of Crystal Growth, 1996, 164, 180-184.	1.5	7
52	Magnetron sputter deposition of A-15 and bcc crystal structure tungsten thin films. Journal of Electronic Materials, 1995, 24, 961-967.	2.2	39
53	Pulsed laser deposition of silicon carbide at room temperature. Applied Physics Letters, 1994, 64, 3413-3415.	3.3	26
54	Shifted xâ€ray photoelectron peak in molecular beam epitaxial GaAs grown at 200 °C. Applied Physics Letters, 1992, 61, 1329-1331.	3.3	18

#	Article	IF	CITATIONS
55	Deposition of stoichiometric MoS2 thin films by pulsed laser evaporation. Thin Solid Films, 1989, 168, 335-344.	1.8	51
56	Applications of a system for real-time imaging of analyzed areas in surface analysis. Surface and Interface Analysis, 1988, 11, 243-250.	1.8	5
57	The status of reference data, reference materials and reference procedures in surface analysis. Surface and Interface Analysis, 1988, 13, 46-50.	1.8	14
58	Growth of yttria-stabilized cubic zirconia films on GaAs (100) by pulsed laser evaporation. Materials Letters, 1987, 5, 250-254.	2.6	24
59	Surface composition and barium evaporation rate of "pedigreed―impregnated tungsten dispenser cathodes during accelerated life testing. Applied Surface Science, 1987, 28, 34-52.	6.1	5
60	Comparison of factor analysis and curve-fitting for data analysis in XPS. Journal of Electron Spectroscopy and Related Phenomena, 1986, 41, 145-156.	1.7	36
61	An evaluation of the bremsstrahlung contribution to specimen damage in XPS using Auger peak intensities. Applied Surface Science, 1986, 25, 455-468.	6.1	4
62	Realâ€ŧime imaging of analyzed areas in surface analysis. Review of Scientific Instruments, 1986, 57, 2326-2331.	1.3	10
63	Signal-to-noise measurement in X-ray photoelectron spectroscopy. Surface and Interface Analysis, 1985, 7, 217-222.	1.8	25
64	Monochromator versus deconvolution for XPS studies using a kratos ES300 system. Journal of Electron Spectroscopy and Related Phenomena, 1985, 36, 213-225.	1.7	14
65	Relative work function, surface composition and topography of "pedigreed―impregnated tungsten dispenser cathodes. Applied Surface Science, 1985, 24, 557-574.	6.1	5
66	Deconvolution in X-ray photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 1984, 33, 9-22.	1.7	55
67	Determination of barium and calcium evaporation rates from impregnated tungsten dispenser cathodes. Applications of Surface Science, 1983, 16, 25-39.	1.0	13
68	Surface analysis with Auger electron spectroscopy. Applications of Surface Science, 1982, 13, 35-62.	1.0	33
69	Electronâ€beamâ€induced decomposition of ion bombarded calcium fluoride surfaces. Journal of Applied Physics, 1981, 52, 6921-6927.	2.5	76
70	Characterization of ion implants in GaAs by AES and GDOS. Applications of Surface Science, 1980, 4, 445-455.	1.0	1
71	Study of the properties of GaAs–anodic Al2O3 interfaces. Journal of Vacuum Science and Technology, 1979, 16, 1483-1486.	1.9	5
72	Quantitative AES analysis of Cu-Ni systems using M1VV transitions (90–110 eV); computer simulation. Applications of Surface Science, 1979, 3, 211-216.	1.0	11

#	Article	IF	CITATIONS
73	Scanning electron excited Auger electron spectroscopy. Applications of Surface Science, 1979, 2, 322-334.	1.0	2
74	AES and APS studies of the detection of Mn in low alloy steel. Applications of Surface Science, 1979, 2, 433-438.	1.0	7
75	The determination of sulfurâ€ionâ€implantation profiles in GaAs using Auger electron spectroscopy. Journal of Applied Physics, 1979, 50, 809-812.	2.5	9
76	Znâ€ionâ€implantation profiles in CuInSe2by Auger electron spectroscopy. Journal of Applied Physics, 1977, 48, 67-72.	2.5	13
77	The use of Auger electron spectroscopy to characterize the adsorption of CO on transition metals. Surface Science, 1977, 62, 21-30.	1.9	74
78	Automatic correction for effects of Auger lineâ€shape changes on depth profiles. Journal of Vacuum Science and Technology, 1977, 14, 232-235.	1.9	14
79	The application of tailored modulation techniques to depth profiling with auger electron spectroscopy. Surface Science, 1976, 60, 1-12.	1.9	18
80	Auger electron spectroscopy studies of CO on Ni spectral line shapes and quantitative aspects. Surface Science, 1976, 55, 741-746.	1.9	53
81	CO—metal bond characterization using auger electron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 1976, 9, 93-97.	1.7	15
82	Oxygen KLL Auger spectra from O2 and CO adsorbed on Ni. Solid State Communications, 1976, 19, 111-113.	1.9	13
83	Auger current measurements for quantitative Auger electron spectroscopy of solids. Journal of Colloid and Interface Science, 1976, 55, 370-376.	9.4	9
84	Some aspects of an AES and XPS study of the adsorption of O2 on Ni. Journal of Vacuum Science and Technology, 1976, 13, 296-300.	1.9	39
85	Electroluminescence in Brâ€; Clâ€; and Znâ€implanted CuInSe2pâ€njunction diodes. Applied Physics Letters, 1976, 28, 214-216.	3.3	27
86	Comparison of Mg L2,3MM Auger currents using electron and ion excitation. Physics Letters, Section A: General, Atomic and Solid State Physics, 1975, 54, 167-168.	2.1	5
87	Chemical effects in the M4,5NN Auger spectrum of Mo(110) due to adsorption of O2 and CO. Journal of Vacuum Science and Technology, 1975, 12, 325-328.	1.9	14
88	Spectrum subtraction techniques in Auger electron spectroscopy. Surface Science, 1975, 51, 318-322.	1.9	29
89	Some factors affecting depth profiling measurements using Auger electron spectroscopy. Surface Science, 1975, 51, 328-332.	1.9	8
90	Appearance potential spectroscopy: Relative signal strengths from 3d transition metals. Surface Science, 1975, 51, 433-440.	1.9	10

#	Article	IF	CITATIONS
91	Comparison of Auger spectra of Mg, Al, and Si excited by lowâ~'energy electron and lowâ~'energy argonâ~'ion bombardment. Journal of Vacuum Science and Technology, 1975, 12, 481-484.	1.9	51
92	An easy method to accurately align ionâ€bombardment guns for depth profiling in Auger electron spectroscopy. Review of Scientific Instruments, 1974, 45, 1113-1114.	1.3	16
93	Quantitative comparison of Ti and TiO surfaces using Auger electron and soft x-ray appearance potential spectroscopies. Journal of Vacuum Science and Technology, 1974, 11, 227-230.	1.9	44
94	Ion excited auger spectra of aluminum. Physics Letters, Section A: General, Atomic and Solid State Physics, 1974, 47, 317-318.	2.1	13
95	The effect of modulation amplitude on electron-excited auger data from titanium. Surface Science, 1974, 42, 1-11.	1.9	56
96	Corrections of auger electron signal strengths for modulation amplitude distortion in a 4-grid retarding potential energy analyzer. Surface Science, 1974, 44, 617-623.	1.9	17
97	Use of analog integration in dynamic background subtraction for quantitative auger electron spectroscopy. Surface Science, 1974, 46, 672-675.	1.9	27
98	Quantitative Auger analysis using integration techniques. Physics Letters, Section A: General, Atomic and Solid State Physics, 1973, 45, 309-310.	2.1	45
99	Chemical Effects in Auger Electron Spectroscopy. Journal of Applied Physics, 1972, 43, 1853-1860.	2.5	281
100	A study of InAs(111) and (1̄1̄1̄) surfaces using LEED and Auger electron spectroscopy. Surface Science, 1971, 26, 669-676.	1.9	23
101	Auger electron spectroscopy studies of carbon overlayers on metal surfaces. Surface Science, 1971, 24, 332-334.	1.9	108
102	Some studies on the Ir(111) surface using LEED and Auger electron spectroscopy. Surface Science, 1971, 25, 451-456.	1.9	28
103	A bibliography of low energy electron diffraction and auger electron spectroscopy. Progress in Surface Science, 1971, 1, 155-221.	8.3	20
104	Combined Low-Energy Electron Diffraction and Auger Electron Spectroscopy Studies of Si, Ge, GaAs, and InSb Surfaces. Journal of Vacuum Science and Technology, 1971, 8, 94-97.	1.9	27
105	Identification of the form of carbon at a Si (100) surface using auger electron spectroscopy. Physics Letters, Section A: General, Atomic and Solid State Physics, 1970, 33, 386-387.	2.1	32
106	CHEMICAL EFFECTS ON THE KLL AUGER ELECTRON SPECTRUM FROM SURFACE CARBON. Applied Physics Letters, 1970, 16, 172-173.	3.3	95
107	Auger-Electron Spectroscopy of Transition Metals. Physical Review B, 1970, 1, 1449-1459.	3.2	96
108	Auger Studies of Cleaved (111) Silicon Surfaces. Journal of Vacuum Science and Technology, 1970, 7, 77-79.	1.9	8

#	Article	IF	CITATIONS
109	Some Problems in the Analysis of Auger Electron Spectra. Journal of Vacuum Science and Technology, 1970, 7, 43-45.	1.9	33
110	A study of Ru(0001) and Rh(111) surfaces using LEED and Auger electron spectroscopy. Surface Science, 1970, 21, 76-85.	1.9	183
111	Auger electron spectroscopy of Si. Surface Science, 1970, 23, 347-362.	1.9	89
112	Chemical shifts in Auger electron spectroscopy from the initial oxidation of Ta(110). Physics Letters, Section A: General, Atomic and Solid State Physics, 1969, 30, 272.	2.1	41
113	ON THE NATURE OF Si (111) SURFACES. Applied Physics Letters, 1969, 15, 140-141.	3.3	21
114	Parameters of cleaved, annealed, and oxygen and hydrogen covered surfaces of Ge and Si by the partial split technique. Surface Science, 1969, 15, 117-136.	1.9	15
115	Some studies of the Cr(IOO) and Cr(110) surfaces. Surface Science, 1969, 17, 484-485.	1.9	23
116	A LEED study of the Ir (100) surface. Surface Science, 1969, 18, 228-238.	1.9	94
117	The structure of the Pt(IOO) surface. Surface Science, 1969, 18, 457-461.	1.9	35
118	Gas adsorption and X-ray studies of internal mated splits in Ge and Si. Surface Science, 1969, 13, 119-129.	1.9	13
119	Surface Conductivity of Cleaved Germanium Surfaces. Journal of Applied Physics, 1968, 39, 3129-3131.	2.5	13
120	Atomic Mating of Germanium Surfaces. Journal of Applied Physics, 1967, 38, 2203-2212.	2.5	30
121	Corrections for the effects of analyzer modulation on peak intensity in derivative Auger spectra. Surface and Interface Analysis, 0, , .	1.8	2
122	Effects of differentiation on peak intensity in direct Auger spectra. Surface and Interface Analysis, 0, ,	1.8	1