Saulius Jursenas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11646701/publications.pdf

Version: 2024-02-01

78	1,687	27 h-index	36
papers	citations		g-index
81	81	81	1955
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Tuning of HOMO-LUMO localization for achieving thermally activated delayed fluorescence. Journal of Luminescence, 2022, 241, 118473.	3.1	14
2	Enhanced blue TADF in a D–A–D type naphthyridine derivative with an asymmetric carbazole-donor motif. Journal of Materials Chemistry C, 2022, 10, 4813-4820.	5 . 5	4
3	Tuneable optical gain and broadband lasing driven in electrospun polymer fibers by high dye concentration. Journal of Materials Chemistry C, 2022, 10, 2042-2048.	5.5	2
4	Boost in Solidâ€State Photon Upconversion Efficiency through Combined Approach of Meltâ€Processing and Purification. Solar Rrl, 2022, 6, .	5.8	7
5	Temporal Dynamics of Solid-State Thermally Activated Delayed Fluorescence: Disorder or Ultraslow Solvation?. Journal of Physical Chemistry Letters, 2022, 13, 1839-1844.	4.6	12
6	Mechanistic Insights into the Photoisomerization of <i>N,N′</i> êĐisubstituted Indigos. Chemistry - A European Journal, 2022, 28, .	3.3	9
7	Single-exponential solid-state delayed fluorescence decay in TADF compounds with minimized conformational disorder. Journal of Materials Chemistry C, 2021, 9, 836-841.	5 . 5	21
8	NIR-to-vis photon upconversion in rubrenes with increasing structural complexity. Journal of Materials Chemistry C, 2021, 9, 4359-4366.	5 . 5	12
9	TADF Parameters in the Solid State: An Easy Way to Draw Wrong Conclusions. Journal of Physical Chemistry A, 2021, 125, 1637-1641.	2.5	16
10	High efficiency and extremely low roll-off solution- and vacuum-processed OLEDs based on isophthalonitrile blue TADF emitter. Chemical Engineering Journal, 2021, 412, 128574.	12.7	30
11	Effect of Substituents at Imide Positions on the Laser Performance of 1,7-Bay-Substituted Perylenediimide Dyes. Journal of Physical Chemistry C, 2021, 125, 12277-12288.	3.1	7
12	Application of singlet sink approach for matrix-free amorphous photon upconversion films. Dyes and Pigments, 2021, 194, 109565.	3.7	2
13	Energy transfer in (PEA) ₂ FA _{nâ^'1} Pb _n Br _{3n+1} quasi-2D perovskites. Journal of Materials Chemistry C, 2021, 9, 4782-4791.	5.5	6
14	Low efficiency roll-off blue TADF OLEDs employing a novel acridine–pyrimidine based high triplet energy host. Journal of Materials Chemistry C, 2021, 9, 17471-17482.	5. 5	14
15	Conformational disorder enabled emission phenomena in heavily doped TADF films. Physical Chemistry Chemical Physics, 2021, 24, 313-320.	2.8	8
16	Minimization of solid-state conformational disorder in donor–acceptor TADF compounds. Physical Chemistry Chemical Physics, 2020, 22, 265-272.	2.8	42
17	Enhanced Energy Transfer in Doped Bifluorene Single Crystals: Prospects for Organic Lasers. Advanced Optical Materials, 2020, 8, 1901670.	7.3	14
18	A carrier density dependent diffusion coefficient, recombination rate and diffusion length in MAPbl ₃ and MAPbBr ₃ crystals measured under one- and two-photon excitations. Journal of Materials Chemistry C, 2020, 8, 10290-10301.	5.5	25

#	Article	IF	Citations
19	Achieving Submicrosecond Thermally Activated Delayed Fluorescence Lifetime and Highly Efficient Electroluminescence by Fine-Tuning of the Phenoxazine–Pyrimidine Structure. ACS Applied Materials & amp; Interfaces, 2020, 12, 10727-10736.	8.0	32
20	Proof of principle of a purine D–A–D′ ligand based ratiometric chemical sensor harnessing complexation induced intermolecular PET. Physical Chemistry Chemical Physics, 2020, 22, 26502-26508.	2.8	6
21	Blue and Deepâ€Blueâ€Emitting Organic Lasers with Topâ€Layer Distributed Feedback Resonators. Advanced Optical Materials, 2020, 8, 2001153.	7.3	12
22	Realization of deep-blue TADF in sterically controlled naphthyridines for vacuum- and solution-processed OLEDs. Journal of Materials Chemistry C, 2020, 8, 8560-8566.	5 . 5	32
23	Different RISC rates in benzoylpyridine-based TADF compounds and their implications for solution-processed OLEDs. Dyes and Pigments, 2020, 182, 108579.	3.7	12
24	Impact of <i>t</i> -butyl substitution in a rubrene emitter for solid state NIR-to-visible photon upconversion. Physical Chemistry Chemical Physics, 2020, 22, 7392-7403.	2.8	32
25	Understanding the limitations of NIR-to-visible photon upconversion in phthalocyanine-sensitized rubrene systems. Journal of Materials Chemistry C, 2020, 8, 5525-5534.	5.5	35
26	Optimization of the carbazole–pyrimidine linking pattern for achieving efficient TADF. Journal of Materials Chemistry C, 2020, 8, 11192-11200.	5. 5	18
27	Achieving efficient deep-blue TADF in carbazole-pyrimidine compounds. Organic Electronics, 2020, 82, 105723.	2.6	19
28	Carrier Recombination and Diffusion in Wet-Cast Tin Iodide Perovskite Layers Under High Intensity Photoexcitation. Journal of Physical Chemistry C, 2019, 123, 19275-19281.	3.1	8
29	Suppression of Charge Transfer States in Aryl-Substituted 9,9′-Bianthryl Derivatives. Journal of Physical Chemistry C, 2019, 123, 27344-27354.	3.1	6
30	Suppression of benzophenone-induced triplet quenching for enhanced TADF performance. Journal of Materials Chemistry C, 2019, 7, 11522-11531.	5. 5	48
31	Crystal Structure Ideality Impact on Bimolecular, Auger, and Diffusion Coefficients in Mixed-Cation Cs <i>>_x</i> MA _{1â€"<i>x</i>} PbBr ₃ and Cs <i>>_x</i> FA _{1â€"<i>x</i>} PbBr ₃ Perovskites. Journal of Physical Chemistry C. 2019, 123, 23838-23844.	3.1	5
32	Emission wavelength dependence on the rISC rate in TADF compounds with large conformational disorder. Chemical Communications, 2019, 55, 1975-1978.	4.1	31
33	Highly efficient nanocrystalline Cs _x MA _{1â^x} PbBr _x perovskite layers for white light generation. Nanotechnology, 2019, 30, 345702.	2.6	2
34	Differently substituted benzothiadiazoles as charge-transporting emitters for fluorescent organic light-emitting diodes. Dyes and Pigments, 2019, 166, 217-225.	3.7	14
35	Investigation of photophysical properties of triphenylamine phenylethenyl derivatives containing tertiary amine groups. Dyes and Pigments, 2019, 166, 122-129.	3.7	5
36	Origin of dual emission in σ-bridged donor–acceptor TADF compounds. Journal of Materials Chemistry C, 2019, 7, 12601-12609.	5.5	32

#	Article	IF	CITATIONS
37	Exciton diffusion in bifluorene single crystals studied by light induced transient grating technique. Applied Physics Letters, 2018, 112, .	3.3	10
38	Low-Threshold Light Amplification in Bifluorene Single Crystals: Role of the Trap States. ACS Applied Materials & Samp; Interfaces, 2018, 10, 2768-2775.	8.0	22
39	Diverse Regimes of Mode Intensity Correlation in Nanofiber Random Lasers through Nanoparticle Doping. ACS Photonics, 2018, 5, 1026-1033.	6.6	24
40	Room temperature phosphorescence <i>vs.</i> thermally activated delayed fluorescence in carbazole–pyrimidine cored compounds. Journal of Materials Chemistry C, 2018, 6, 11128-11136.	5.5	32
41	Diffusion Enhancement in Highly Excited MAPbl ₃ Perovskite Layers with Additives. Journal of Physical Chemistry Letters, 2018, 9, 3167-3172.	4.6	46
42	Enhancement of triplet-sensitized upconversion in rigid polymers <i>via</i> singlet exciton sink approach. Chemical Science, 2018, 9, 6796-6802.	7.4	30
43	V-Shaped Hole-Transporting TPD Dimers Containing Tröger's Base Core. Journal of Physical Chemistry C, 2017, 121, 10267-10274.	3.1	6
44	Structure–property relationship of blue solid state emissive phenanthroimidazole derivatives. Physical Chemistry Chemical Physics, 2017, 19, 16737-16748.	2.8	49
45	Triplet–Triplet Annihilation in 9,10-Diphenylanthracene Derivatives: The Role of Intersystem Crossing and Exciton Diffusion. Journal of Physical Chemistry C, 2017, 121, 8515-8524.	3.1	47
46	Bifluorene Single Crystals with Extremely Low‶hreshold Amplified Spontaneous Emission. Advanced Optical Materials, 2017, 5, 1600823.	7.3	14
47	Two Regimes of Carrier Diffusion in Vapor-Deposited Lead-Halide Perovskites. Journal of Physical Chemistry C, 2017, 121, 21600-21609.	3.1	33
48	Nanoparticle-doped electrospun fiber random lasers with spatially extended light modes. Optics Express, 2017, 25, 24604.	3.4	18
49	The Role of Triplet Exciton Diffusion in Light-Upconverting Polymer Glasses. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 15732-15740.	8.0	50
50	Fluorescence sensing based on phenylenediacetonitrile doped into polymer host. Journal of Luminescence, 2016, 170, 293-298.	3.1	1
51	High-triplet-energy carbazole and fluorene tetrads. Journal of Luminescence, 2016, 169, 256-265.	3.1	10
52	Heterocyclic heptacene analogs – 8H-16,17-epoxydinaphto[2,3-c:2′,3′-g]carbazoles as charge transport materials. Dyes and Pigments, 2016, 124, 133-144.	3.7	10
53	Synthesis and optical properties of the isomeric pyrimidine andÂcarbazole derivatives: Effects of polar substituents and linking topology. Dyes and Pigments, 2015, 118, 118-128.	3.7	26
54	Synthesis and properties of hole-transporting triphenylamine-derived dendritic compounds. Dyes and Pigments, 2015, 115, 135-142.	3.7	9

#	Article	IF	Citations
55	Impact of non-symmetric 2,9,10-aryl substitution on charge transport and optical properties of anthracene derivatives. Dyes and Pigments, 2015, 122, 147-159.	3.7	10
56	2,4-Bis(4-aryl-1,2,3-triazol-1-yl)pyrrolo[2,3-d]pyrimidines: synthesis and tuning of optical properties by polar substituents. RSC Advances, 2015, 5, 38610-38622.	3.6	14
57	Concentration effects on spontaneous and amplified emission in benzo[c]fluorenes. Physical Chemistry Chemical Physics, 2015, 17, 12935-12948.	2.8	13
58	Fluorene- and benzofluorene-cored oligomers as low threshold and high gain amplifying media. Applied Physics Letters, 2015, 107, .	3.3	27
59	Differently linked fluorene-carbazole triads for light amplification. Dyes and Pigments, 2015, 123, 370-379.	3.7	15
60	Structure-properties relationship of the derivatives of carbazole and 1,8-naphthalimide: Effects of the substitution and the linking topology. Dyes and Pigments, 2015, 114, 239-252.	3.7	39
61	Non-symmetric 9,10-diphenylanthracene-based deep-blue emitters with enhanced charge transport properties. Physical Chemistry Chemical Physics, 2014, 16, 7089-7101.	2.8	45
62	Morphology and Emission Tuning in Fluorescent Nanoparticles Based on Phenylenediacetonitrile. Journal of Physical Chemistry C, 2014, 118, 25261-25271.	3.1	20
63	New derivatives of triphenylamine and naphthalimide as ambipolar organic semiconductors: Experimental and theoretical approach. Dyes and Pigments, 2014, 106, 58-70.	3.7	33
64	Phenylethenylâ€Substituted Triphenylamines: Efficient, Easily Obtainable, and Inexpensive Holeâ€Transporting Materials. Chemistry - A European Journal, 2013, 19, 15044-15056.	3.3	27
65	Optical study of the formation of pyrrolo[2,3-d]pyrimidine-based fluorescent nanoaggregates. Tetrahedron, 2013, 69, 9566-9572.	1.9	24
66	1,2,3-Triazoles as leaving groups in purine chemistry: a three-step synthesis of N6-substituted-2-triazolyl-adenine nucleosides and photophysical properties thereof. Tetrahedron Letters, 2013, 54, 850-853.	1.4	38
67	Glass forming donor-substituted s-triazines: Photophysical and electrochemical properties. Dyes and Pigments, 2013, 97, 412-422.	3.7	36
68	Glass-Forming Carbazolyl and Phenothiazinyl Tetra Substituted Pyrene Derivatives: Photophysical, Electrochemical, and Photoelectrical Properties. Journal of Physical Chemistry C, 2012, 116, 15878-15887.	3.1	43
69	Structure Properties Relationship of Donor–Acceptor Derivatives of Triphenylamine and 1,8-Naphthalimide. Journal of Physical Chemistry C, 2012, 116, 14811-14819.	3.1	66
70	Fluorescence and amplified spontaneous emission of glass forming compounds containing styryl-4H-pyran-4-ylidene fragment. Journal of Luminescence, 2012, 132, 2421-2426.	3.1	21
71	Self-assembled nanoparticles of p-phenylenediacetonitrile derivatives with fluorescence turn-on. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	7
72	Synthesis of 4-aryl-, 2,4-diaryl- and 2,4,7-triarylpyrrolo[2,3-d]pyrimidines by a combination of the Suzuki cross-coupling and N-arylation reactions. Tetrahedron, 2012, 68, 329-339.	1.9	20

#	Article	IF	CITATION
73	Impact of Linking Topology on the Properties of Carbazole Trimers and Dimers. Journal of Physical Chemistry C, 2011, 115, 4887-4897.	3.1	74
74	Multifunctional red phosphorescent bis-cyclometallated iridium complexes based on 2-phenyl-1,2,3-benzotriazole ligand and carbazolyl moieties. Tetrahedron, 2011, 67, 1852-1861.	1.9	35
75	Synthesis and photophysical properties of oligoarylenes with a pyrrolo[2,3-d]pyrimidine core. Tetrahedron Letters, 2010, 51, 3902-3906.	1.4	27
76	Multicoordinational excited state twisting of indan-1,3-dione derivatives. Chemical Physics, 2008, 351, 147-153.	1.9	14
77	Efficient phosphorescent bis-cyclometallated iridium complex based on triazole-quinoline ligand. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 198, 106-110.	3.9	6
78	Substituent effect on TADF properties of 2-modified 4,6-bis(3,6-di- <i>tert</i> -butyl-9-carbazolyl)-5-methylpyrimidines. Beilstein Journal of Organic Chemistry, 0, 18, 497-507.	2.2	2