Oriol Juanola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1164629/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FXR modulates the gut-vascular barrier by regulating the entry sites for bacterial translocation in experimental cirrhosis. Journal of Hepatology, 2019, 71, 1126-1140.	1.8	153
2	Non-Alcoholic Fatty Liver Disease: Metabolic, Genetic, Epigenetic and Environmental Risk Factors. International Journal of Environmental Research and Public Health, 2021, 18, 5227.	1.2	109
3	Circulating levels of butyrate are inversely related to portal hypertension, endotoxemia, and systemic inflammation in patients with cirrhosis. FASEB Journal, 2019, 33, 11595-11605.	0.2	68
4	Gut Bacterial DNA Translocation is an Independent Risk Factor of Flare at Short Term in Patients With Crohn's Disease. American Journal of Gastroenterology, 2016, 111, 529-540.	0.2	34
5	Bifidobacterium pseudocatenulatum CECT7765 induces an M2 anti-inflammatory transition in macrophages from patients with cirrhosis. Journal of Hepatology, 2016, 64, 135-145.	1.8	31
6	Bacterial Translocation as Inflammatory Driver in Crohn's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 703310.	1.8	25
7	Toll-like receptor polymorphisms compromise the inflammatory response against bacterial antigen translocation in cirrhosis. Scientific Reports, 2017, 7, 46425.	1.6	24
8	Intestinal microbiota drives cholestasis-induced specific hepatic gene expression patterns. Gut Microbes, 2021, 13, 1-20.	4.3	16
9	Regulatory T Cells Restrict Permeability to Bacterial Antigen Translocation and Preserve Shortâ€Chain Fatty Acids in Experimental Cirrhosis. Hepatology Communications, 2018, 2, 1610-1623.	2.0	15
10	Bacterial antigen translocation and age as BMIâ€independent contributing factors on systemic inflammation in NAFLD patients. Liver International, 2020, 40, 2182-2193.	1.9	14
11	Improved hemodynamic and liver function in portal hypertensive cirrhotic rats after administration of B. pseudocatenulatum CECT 7765. European Journal of Nutrition, 2019, 58, 1647-1658.	1.8	13
12	Liver Sinusoidal Endothelial Cells Contribute to Hepatic Antigen-Presenting Cell Function and Th17 Expansion in Cirrhosis. Cells, 2020, 9, 1227.	1.8	13
13	Selective intestinal decontamination with norfloxacin enhances a regulatory T cellâ€mediated inflammatory control mechanism in cirrhosis. Liver International, 2016, 36, 1811-1820.	1.9	12
14	Anti-TNF-alpha loss of response is associated with a decreased percentage of FoxP3+ T cells and a variant NOD2 genotype in patients with Crohn's disease. Journal of Gastroenterology, 2015, 50, 758-768.	2.3	10
15	IL26 modulates cytokine response and anti-TNF consumption in Crohn's disease patients with bacterial DNA. Journal of Molecular Medicine, 2017, 95, 1227-1236.	1.7	9
16	Paneth Cells Regulate Lymphangiogenesis under Control of Microbial Signals during Experimental Portal Hypertension. Biomedicines, 2022, 10, 1503.	1.4	4