Gaetano Irace

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11645139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intrinsic blue-green fluorescence in amyloyd fibrils. AIMS Biophysics, 2018, 5, 155-165.	0.6	16
2	Vanillin Affects Amyloid Aggregation and Non-Enzymatic Glycation in Human Insulin. Scientific Reports, 2017, 7, 15086.	3.3	48
3	Insights into Insulin Fibril Assembly at Physiological and Acidic pH and Related Amyloid Intrinsic Fluorescence. International Journal of Molecular Sciences, 2017, 18, 2551.	4.1	57
4	Role of Glycation in Amyloid: Effect on the Aggregation Process and Cytotoxicity. , 2016, , .		3
5	Glycation in Demetalated Superoxide Dismutase 1 Prevents Amyloid Aggregation and Produces Cytotoxic Ages Adducts. Frontiers in Molecular Biosciences, 2016, 3, 55.	3.5	16
6	D-ribose-glycation of insulin prevents amyloid aggregation and produces cytotoxic adducts. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 93-104.	3.8	34
7	The Effect of Glycosaminoglycans (GAGs) on Amyloid Aggregation and Toxicity. Molecules, 2015, 20, 2510-2528.	3.8	89
8	Glycation of Wild-Type Apomyoglobin Induces Formation of Highly Cytotoxic Oligomeric Species. Journal of Cellular Physiology, 2015, 230, 2807-2820.	4.1	13
9	Plateletâ€Activating Factor Mediates the Cytotoxicity Induced by W7FW14F Apomyoglobin Amyloid Aggregates in Neuroblastoma Cells. Journal of Cellular Biochemistry, 2014, 115, 2116-2122.	2.6	8
10	Differential effects of glycation on protein aggregation and amyloid formation. Frontiers in Molecular Biosciences, 2014, 1, 9.	3.5	93
11	Amyloid toxicity and plateletâ€activating factor signaling. Journal of Cellular Physiology, 2013, 228, 1143-1148.	4.1	5
12	Unraveling amyloid toxicity pathway in NIH3T3 cells by a combined proteomic and ¹ Hâ€NMR metabonomic approach. Journal of Cellular Physiology, 2013, 228, 1359-1367.	4.1	10
13	W-F Substitutions in Apomyoglobin Increase the Local Flexibility of the N-terminal Region Causing Amyloid Aggregation: A H/D Exchange Study. Protein and Peptide Letters, 2013, 20, 898-904.	0.9	6
14	Glycation Accelerates Fibrillization of the Amyloidogenic W7FW14F Apomyoglobin. PLoS ONE, 2013, 8, e80768.	2.5	33
15	Misfolding and Amyloid Aggregation of Apomyoglobin. International Journal of Molecular Sciences, 2013, 14, 14287-14300.	4.1	35
16	Resolution of the effects induced by WÂ→ÂF substitutions on the conformation and dynamics of the amyloid-forming apomyoglobin mutant W7FW14F. European Biophysics Journal, 2012, 41, 615-627.	2.2	13
17	Time-resolved small-angle x-ray scattering study of the early stage of amyloid formation of an apomyoglobin mutant. Physical Review E, 2011, 84, 061904.	2.1	36
18	Heparin Induces Harmless Fibril Formation in Amyloidogenic W7FW14F Apomyoglobin and Amyloid Aggregation in Wild-Type Protein In Vitro. PLoS ONE, 2011, 6, e22076.	2.5	53

GAETANO IRACE

#	Article	IF	CITATIONS
19	Inhibition of aggregate formation as therapeutic target in protein misfolding diseases: effect of tetracycline and trehalose. Expert Opinion on Therapeutic Targets, 2010, 14, 1311-1321.	3.4	25
20	W7FW14F apomyoglobin amyloid aggregatesâ€mediated apoptosis is due to oxidative stress and AKT inactivation caused by Ras and Rac. Journal of Cellular Physiology, 2009, 221, 412-423.	4.1	23
21	Effect of Trehalose on W7FW14F Apomyoglobin and Insulin Fibrillization:  New Insight into Inhibition Activity. Biochemistry, 2008, 47, 1789-1796.	2.5	50
22	Heme binding inhibits the fibrillization of amyloidogenic apomyoglobin and determines lack of aggregate cytotoxicity. Protein Science, 2007, 16, 507-516.	7.6	26
23	Resolution of Tryptophan-ANS Fluorescence Energy Transfer in Apomyoglobin by Site-directed Mutagenesis¶. Photochemistry and Photobiology, 2007, 76, 381-384.	2.5	0
24	Tetracycline inhibits W7FW14F apomyoglobin fibril extension and keeps the amyloid protein in a prefibrillar, highly cytotoxic state. FASEB Journal, 2006, 20, 346-347.	0.5	34
25	Kinetics of amyloid aggregation of mammal apomyoglobins and correlation with their amino acid sequences. FEBS Letters, 2006, 580, 1681-1684.	2.8	14
26	Fibrillogenesis and Cytotoxic Activity of the Amyloid-forming Apomyoglobin Mutant W7FW14F. Journal of Biological Chemistry, 2004, 279, 13183-13189.	3.4	68
27	Tryptophanyl substitutions in apomyoglobin affect conformation and dynamic properties of AGH subdomain. Biopolymers, 2003, 70, 649-654.	2.4	3
28	Hexafluoroisopropanol and Acid Destabilized Forms of Apomyoglobin Exhibit Structural Differencesâ€. Biochemistry, 2003, 42, 312-319.	2.5	25
29	Tryptophanyl Substitutions in Apomyoglobin Determine Protein Aggregation and Amyloid-like Fibril Formation at Physiological pH. Journal of Biological Chemistry, 2002, 277, 45887-45891.	3.4	40
30	Resolution of Tryptophan–ANS Fluorescence Energy Transfer in Apomyoglobin by Site-directed Mutagenesis¶. Photochemistry and Photobiology, 2002, 76, 381.	2.5	12
31	Effect of molecular confinement on internal enzyme dynamics: Frequency domain fluorometry and molecular dynamics simulation studies. Biopolymers, 2002, 67, 85-95.	2.4	46
32	The effect of molecular confinement on the conformational dynamics of the native and partly folded state of apomyoglobin. FEBS Letters, 2001, 509, 476-480.	2.8	16
33	The effect of tryptophanyl substitution on folding and structure of myoglobin. FEBS Journal, 2000, 267, 3937-3945.	0.2	35
34	Tryptophanyl contributions to apomyoglobin fluorescence resolved by site-directed mutagenesis. BBA - Proteins and Proteomics, 2000, 1476, 173-180.	2.1	8
35	Tryptophanyl fluorescence lifetime distribution of hyperthermophilic βâ€glycosidase from molecular dynamics simulation: A comparison with the experimental data. Protein Science, 2000, 9, 1730-1742.	7.6	8
36	Structural and dynamic aspects of ?-glycosidase from mesophilic and thermophilic bacteria by multitryptophanyl emission decay studies. Proteins: Structure, Function and Bioinformatics, 1999, 35, 163-172.	2.6	10

GAETANO IRACE

#	Article	IF	CITATIONS
37	Apomyoglobin folding intermediates characterized by the hydrophobic fluorescent probe 8-anilino-1-naphthalene sulfonate (ANS). BBA - Proteins and Proteomics, 1998, 1385, 69-77.	2.1	57
38	Multitryptophan-Fluorescence-Emission Decay of beta-Glycosidase From the Extremely Thermophilic Archaeon Sulfolobus Solfataricus. FEBS Journal, 1997, 244, 53-58.	0.2	15
39	Perturbation of conformational dynamics, enzymatic activity, and thermostability of β-glycosidase from archaeonSulfolobus solfataricus by pH and sodium dodecyl sulfate detergent. Proteins: Structure, Function and Bioinformatics, 1997, 27, 71-79.	2.6	23
40	Pressure-Induced Perturbation of Apomyoglobin Structure:Â Fluorescence Studies on Native and Acidic Compact Formsâ€. Biochemistry, 1996, 35, 1173-1178.	2.5	37
41	Pressureâ€induced perturbation of ANSâ€apomyoglobin complex: Frequency domain fluorescence studies on native and acidic compact states. Protein Science, 1996, 5, 121-126.	7.6	19
42	High-performance liquid chromatographic purification of sodium bis(2-ethyl-1-hexyl)sulphosuccinate from commercial preparations containing near-UV absorbing and fluorescent impurities. Journal of Chromatography A, 1994, 662, 263-267.	3.7	1
43	RESOLUTION OF THE INDIVIDUAL TRYPTOPHANYL CONTRIBUTIONS TO THE NEAR-ULTRAVIOLET DICHROIC ACTIVITY OF APOMYOGLOBIN. Photochemistry and Photobiology, 1994, 59, 611-614.	2.5	1
44	RESOLUTION OF THE INDIVIDUAL TRYPTOPHANYL CONTRIBUTIONS TO THE NEAR-ULTRAVIOLET DICHROIC ACTIVITY OF APOMYOGLOBIN. Photochemistry and Photobiology, 1994, 59, 611-614.	2.5	8
45	Unfolding Pathway of Apomyoglobin. Journal of Molecular Biology, 1994, 241, 103-109.	4.2	20
46	Solvent and thermal denaturation of the acidic compact state of apomyoglobin. FEBS Letters, 1994, 338, 11-15.	2.8	18
47	Structure and dynamics of the acidic compact state of apomyoglobin by frequency-domain fluorometry. FEBS Journal, 1993, 218, 213-219.	0.2	16
48	Folding and dynamics of melittin in reversed micelles. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1146, 213-218.	2.6	9
49	Conformational dynamics of native, compact and fully unfolded states of proteins detected by frequency domain fluorometry. Studies in Organic Chemistry, 1993, 47, 197-204.	0.2	1
50	Salt-induced refolding of myoglobin at acidic pH: Molecular properties of a partly folded intermediate. Archives of Biochemistry and Biophysics, 1992, 298, 624-629.	3.0	29
51	Fluorescence lifetime distribution of 1,8-anilinonaphthalenesulfonate (ANS) in reversed micelles detected by frequency domain fluorometry. Biophysical Chemistry, 1992, 44, 83-90.	2.8	12
52	Molecular organization and dynamics of the outer membrane of Salmonella thyphimurium mutant strains detected by frequency domain fluorometry. Archives of Biochemistry and Biophysics, 1991, 286, 518-523.	3.0	4
53	Dynamic fluorescence of extrinsic fluorophores as a tool for studying protein conformational substates. Biology of Metals, 1990, 3, 131-132.	1.1	1
54	DYNAMIC FLUORESCENCE OF TRYPTOPHANYL RESIDUES IN LOW MOLECULAR WEIGHT MODEL COMPOUNDS AND PROTEINS. Photochemistry and Photobiology, 1989, 50, 165-168.	2.5	15

GAETANO IRACE

#	Article	IF	CITATIONS
55	Conformational substates of myoglobin detected by extrinsic dynamic fluorescence studies. Biochemistry, 1989, 28, 7542-7545.	2.5	22
56	Multiple conformational states in myoglobin revealed by frequency domain fluorometry. Biochemistry, 1989, 28, 1508-1512.	2.5	31
57	Unfolding pathway of myoglobin: effect of denaturants on solvent accessibility to tyrosyl residues detected by second-derivative spectroscopy. Biochemistry, 1987, 26, 2130-2134.	2.5	31
58	Dynamic aspects of the heme-binding site in phylogenetically distant myoglobins. BBA - Proteins and Proteomics, 1987, 913, 150-154.	2.1	13
59	TEMPERATURE DEPENDENCE OF PHOSPHORESCENCE PARAMETERS OF PHYLOGENETICALLY DISTANT APOMYOGLOBINS. Photochemistry and Photobiology, 1987, 45, 741-744.	2.5	7
60	Unfolding pathway of myoglobin: Molecular properties of intermediate forms. Archives of Biochemistry and Biophysics, 1986, 244, 459-469.	3.0	94
61	RESOLUTION OF OVERLAPPING BANDS IN THE NEAR-UV ABSORPTION SPECTRUM OF INDOLE DERIVATIVES. Photochemistry and Photobiology, 1985, 42, 505-508.	2.5	11
62	Myoglobin structure and regulation of solvent accessibility of heme pocket. International Journal of Peptide and Protein Research, 1985, 26, 195-207.	0.1	19
63	Determination of tyrosine exposure in proteins by second-derivative spectroscopy. Biochemistry, 1984, 23, 1871-1875.	2.5	266
64	Structural and functional aspects of the heart ventricle myoglobin of bluefin tuna. Comparative Biochemistry and Physiology A, Comparative Physiology, 1983, 76, 481-485.	0.6	18
65	Unfolding pathway of myoglobin. Evidence for a multistate process. Biochemistry, 1983, 22, 4165-4170.	2.5	65
66	Heme and cysteine microenvironments of tuna apomyoglobin. Evidence of two independent unfolding regions. Biochemistry, 1982, 21, 212-215.	2.5	35
67	Simultaneous determination of tyrosine and tryptophan residues in proteins by second-derivative spectroscopy. Analytical Biochemistry, 1982, 126, 251-257.	2.4	92
68	Tryptophanyl fluorescence heterogeneity of apomyoglobins. Correlation with the presence of two distinct structural domains. Biochemistry, 1981, 20, 792-799.	2.5	68
69	SPECTROSCOPIC PROPERTIES OF RHODAMINE B-LABELED THYROID HORMONE. Annals of the New York Academy of Sciences, 1981, 366, 253-264.	3.8	1
70	Second-derivative spectroscopy of proteins: Studies on tyrosyl residues. Analytical Biochemistry, 1980, 106, 49-54.	2.4	49
71	The effect of evolution on homologous proteins. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1978, 532, 354-367.	1.7	19
72	Second-Derivative Spectroscopy of Proteins. A Method for the Quantitiative Determination of Aromatic Amino Acids in Proteins. FEBS Journal, 1978, 90, 433-440.	0.2	133