Mohan K Raizada

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/11644171/mohan-k-raizada-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

61 12,987 107 244 h-index g-index citations papers 6.5 5.8 15,003 249 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
244	Gut Microbiome and Neuroinflammation in Hypertension Circulation Research, 2022, 130, 401-417	15.7	6
243	Identification of a Gut Commensal That Compromises the Blood Pressure-Lowering Effect of Ester Angiotensin-Converting Enzyme Inhibitors <i>Hypertension</i> , 2022 , 101161HYPERTENSIONAHA12118711	8.5	4
242	Depression phenotype identified by using single nucleotide exact amplicon sequence variants of the human gut microbiome. <i>Molecular Psychiatry</i> , 2021 , 26, 4277-4287	15.1	24
241	Gut-brain-bone marrow axis in hypertension. <i>Current Opinion in Nephrology and Hypertension</i> , 2021 , 30, 159-165	3.5	3
240	Distinct Gene Expression Profiles in Colonic Organoids from Normotensive and the Spontaneously Hypertensive Rats. <i>Cells</i> , 2021 , 10,	7.9	3
239	Butyrate Regulates COVID-19-Relevant Genes in Gut Epithelial Organoids From Normotensive Rats. <i>Hypertension</i> , 2021 , 77, e13-e16	8.5	19
238	Angiotensin-converting enzyme 2 and COVID-19 in cardiorenal diseases. <i>Clinical Science</i> , 2021 , 135, 1-17	76.5	11
237	Functional heart recovery in an adult mammal, the spiny mouse. <i>International Journal of Cardiology</i> , 2021 , 338, 196-203	3.2	4
236	Depressive hypertension: A proposed human endotype of brain/gut microbiome dysbiosis. <i>American Heart Journal</i> , 2021 , 239, 27-37	4.9	3
235	Potential of Minocycline for Treatment of Resistant Hypertension. <i>American Journal of Cardiology</i> , 2021 , 156, 147-149	3	1
234	Would Repurposing Minocycline Alleviate Neurologic Manifestations of COVID-19?. <i>Frontiers in Neuroscience</i> , 2020 , 14, 577780	5.1	4
233	Gut Pathology and Its Rescue by ACE2 (Angiotensin-Converting Enzyme 2) in Hypoxia-Induced Pulmonary Hypertension. <i>Hypertension</i> , 2020 , 76, 206-216	8.5	17
232	Maternal Treatment With Captopril Persistently Alters Gut-Brain Communication and Attenuates Hypertension of Male Offspring. <i>Hypertension</i> , 2020 , 75, 1315-1324	8.5	29
231	Response by Gheblawi et al to Letter Regarding Article, "Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2". <i>Circulation Research</i> , 2020 , 127, e46-e47	15.7	10
230	SARS-CoV-2 Receptor ACE2 (Angiotensin-Converting Enzyme 2) Is Upregulated in Colonic Organoids From Hypertensive Rats. <i>Hypertension</i> , 2020 , 76, e26-e28	8.5	7
229	Altered Gut Microbiome Profile in Patients With Pulmonary Arterial Hypertension. <i>Hypertension</i> , 2020 , 75, 1063-1071	8.5	57
228	Report of the National Heart, Lung, and Blood Institute Working Group on Hypertension: Barriers to Translation. <i>Hypertension</i> , 2020 , 75, 902-917	8.5	17

227	Probiotics Prevent Dysbiosis and the Rise in Blood Pressure in Genetic Hypertension: Role of Short-Chain Fatty Acids. <i>Molecular Nutrition and Food Research</i> , 2020 , 64, e1900616	5.9	53
226	Angiotensin-(1-7) Expressed From Lactobacillus Bacteria Protect Diabetic Retina in Mice. <i>Translational Vision Science and Technology</i> , 2020 , 9, 20	3.3	5
225	ACE2 as therapeutic agent. Clinical Science, 2020, 134, 2581-2595	6.5	4
224	Pulmonary hypertension: Pathophysiology beyond the lung. <i>Pharmacological Research</i> , 2020 , 151, 1045	1 <u>8</u> 0.2	13
223	Transcriptomic signature of gut microbiome-contacting cells in colon of spontaneously hypertensive rats. <i>Physiological Genomics</i> , 2020 , 52, 121-132	3.6	16
222	SARS-CoV-2 Infections and ACE2: Clinical Outcomes Linked With Increased Morbidity and Mortality in Individuals With Diabetes. <i>Diabetes</i> , 2020 , 69, 1875-1886	0.9	35
221	Mycophenolate Improves Brain-Gut Axis Inducing Remodeling of Gut Microbiota in DOCA-Salt Hypertensive Rats. <i>Antioxidants</i> , 2020 , 9,	7.1	2
220	Pulmonary arterial hypertension-associated changes in gut pathology and microbiota. <i>ERJ Open Research</i> , 2020 , 6,	3.5	11
219	Probiotic Bifidobacterium breve prevents DOCA-salt hypertension. FASEB Journal, 2020, 34, 13626-136	40 .9	17
218	ACE2 (Angiotensin-Converting Enzyme 2) in Cardiopulmonary Diseases: Ramifications for the Control of SARS-CoV-2. <i>Hypertension</i> , 2020 , 76, 651-661	8.5	38
217	Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. <i>Circulation Research</i> , 2020 , 126, 145	5 6 -5747	4 ¹⁰¹²
216	Impaired Autonomic Nervous System-Microbiome Circuit in Hypertension. <i>Circulation Research</i> , 2019 , 125, 104-116	15.7	47
215	Elevated bone marrow sympathetic drive precedes systemic inflammation in angiotensin II hypertension. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2019 , 317, H279-H289	5.2	20
214	Role of the immune system in vascular function and blood pressure control induced by faecal microbiota transplantation in rats. <i>Acta Physiologica</i> , 2019 , 227, e13285	5.6	50
213	Critical Role of the Interaction Gut Microbiota - Sympathetic Nervous System in the Regulation of Blood Pressure. <i>Frontiers in Physiology</i> , 2019 , 10, 231	4.6	89
212	Sustained Captopril-Induced Reduction in Blood Pressure Is Associated With Alterations in Gut-Brain Axis in the Spontaneously Hypertensive Rat. <i>Journal of the American Heart Association</i> , 2019 , 8, e010721	6	37
211	Chemokine signaling axis between endothelial and myeloid cells regulates development of pulmonary hypertension associated with pulmonary fibrosis and hypoxia. <i>American Journal of Physiology - Lung Cellular and Molecular Physiology</i> , 2019 , 317, L434-L444	5.8	4
210	Expression of Human ACE2 in Lactobacillus and Beneficial Effects in Diabetic Retinopathy in Mice. Molecular Therapy - Methods and Clinical Development, 2019, 14, 161-170	6.4	50

209	Translocation of bone marrow-derived cells contribute to PVN neuroinflammation in hypoxia-induced PH. <i>FASEB Journal</i> , 2019 , 33, 550.13	0.9	
208	Complementary Embryonic and Adult Cell Populations Enhance Myocardial Repair in Rat Myocardial Injury Model. <i>Stem Cells International</i> , 2019 , 2019, 3945850	5	
207	Microglial Cells Impact Gut Microbiota and Gut Pathology in Angiotensin II-Induced Hypertension. <i>Circulation Research</i> , 2019 , 124, 727-736	15.7	52
206	Involvement of Neuroinflammation in the Pathogenesis of Monocrotaline-Induced Pulmonary Hypertension. <i>Hypertension</i> , 2018 , 71, 1156-1163	8.5	27
205	Coupling corticotropin-releasing-hormone and angiotensin converting enzyme 2 dampens stress responsiveness in male mice. <i>Neuropharmacology</i> , 2018 , 133, 85-93	5.5	26
204	Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. <i>Clinical Science</i> , 2018 , 132, 701-718	6.5	177
203	Involvement of Microglial Cells in Hypoxia-induced Pulmonary Hypertension. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2018 , 59, 271-273	5.7	7
202	The Selective Angiotensin II Type 2 Receptor Agonist, Compound 21, Attenuates the Progression of Lung Fibrosis and Pulmonary Hypertension in an Experimental Model of Bleomycin-Induced Lung Injury. <i>Frontiers in Physiology</i> , 2018 , 9, 180	4.6	36
201	Gut microbiota and serum metabolite differences in African Americans and White Americans with high blood pressure. <i>International Journal of Cardiology</i> , 2018 , 271, 336-339	3.2	27
200	Stress Dampening and Anxiolytic Effects of Overexpressing Angiotensin Converting Enzyme 2 in Female Mice. <i>FASEB Journal</i> , 2018 , 32, 737.7	0.9	
199	Short-term captopril treatment causes persistently decreased blood pressure associated with long-lasting shifts in gut microbiota and improvement in gut pathology. <i>FASEB Journal</i> , 2018 , 32, 582.7	0.9	
198	Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression. <i>Gut</i> , 2018 , 67, 1555-1557	19.2	189
197	The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. <i>Nature Reviews Nephrology</i> , 2018 , 14, 442-456	14.9	199
196	The Gut, Its Microbiome, and Hypertension. <i>Current Hypertension Reports</i> , 2017 , 19, 36	4.7	78
195	Gut Microbiota: Potential for a Unifying Hypothesis for Prevention and Treatment of Hypertension. <i>Circulation Research</i> , 2017 , 120, 1724-1726	15.7	24
194	Report of the National Heart, Lung, and Blood Institute Working Group on the Role of Microbiota in Blood Pressure Regulation: Current Status and Future Directions. <i>Hypertension</i> , 2017 ,	8.5	33
193	Intestinal Permeability Biomarker Zonulin is Elevated in Healthy Aging. <i>Journal of the American Medical Directors Association</i> , 2017 , 18, 810.e1-810.e4	5.9	60
192	Hypertension-Linked Pathophysiological Alterations in the Gut. <i>Circulation Research</i> , 2017 , 120, 312-323	B15.7	247

(2015-2017)

191	Shifts in the Gut Microbiota Composition Due to Depleted Bone Marrow Beta Adrenergic Signaling Are Associated with Suppressed Inflammatory Transcriptional Networks in the Mouse Colon. <i>Frontiers in Physiology</i> , 2017 , 8, 220	4.6	18	
190	A Single Angiotensin II Hypertensive Stimulus Is Associated with Prolonged Neuronal and Immune System Activation in Wistar-Kyoto Rats. <i>Frontiers in Physiology</i> , 2017 , 8, 592	4.6	33	
189	Hypertension-linked mechanical changes of rat gut. Acta Biomaterialia, 2016, 45, 296-302	10.8	23	
188	Therapeutic potential of adipose stem cell-derived conditioned medium against pulmonary hypertension and lung fibrosis. <i>British Journal of Pharmacology</i> , 2016 , 173, 2859-79	8.6	35	
187	Angiotensin II Regulation of Proliferation, Differentiation, and Engraftment of Hematopoietic Stem Cells. <i>Hypertension</i> , 2016 , 67, 574-84	8.5	41	
186	Angiotensin-converting enzyme 2 inhibits high-mobility group box 1 and attenuates cardiac dysfunction post-myocardial ischemia. <i>Journal of Molecular Medicine</i> , 2016 , 94, 37-49	5.5	40	
185	Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors. <i>Neuropharmacology</i> , 2016 , 105, 114-123	5.5	66	
184	Anti-hypertensive Effects of Diminazene Aceturate: An Angiotensin- Converting Enzyme 2 Activator in Rats. <i>Protein and Peptide Letters</i> , 2016 , 23, 9-16	1.9	26	
183	Brain-Gut-Bone Marrow Axis: Implications for Hypertension and Related Therapeutics. <i>Circulation Research</i> , 2016 , 118, 1327-36	15.7	74	
182	Angiotensin-Converting Enzyme 2/Angiotensin-(1-7)/Mas Receptor Axis: Emerging Pharmacological Target for Pulmonary Diseases 2015 , 269-274		5	
181	Gut dysbiosis is linked to hypertension. <i>Hypertension</i> , 2015 , 65, 1331-40	8.5	716	
180	Impact of antibiotics on arterial blood pressure in a patient with resistant hypertension - A case report. <i>International Journal of Cardiology</i> , 2015 , 201, 157-8	3.2	54	
179	Diminazene enhances stability of atherosclerotic plaques in ApoE-deficient mice. <i>Vascular Pharmacology</i> , 2015 , 74, 103-113	5.9	17	
178	Diminazene protects corpus cavernosum against hypercholesterolemia-induced injury. <i>Journal of Sexual Medicine</i> , 2015 , 12, 289-302	1.1	12	
177	ACE2 and Microbiota: Emerging Targets for Cardiopulmonary Disease Therapy. <i>Journal of Cardiovascular Pharmacology</i> , 2015 , 66, 540-50	3.1	67	
176	Upregulation of Angiotensin (1-7)-Mediated Signaling Preserves Endothelial Function Through Reducing Oxidative Stress in Diabetes. <i>Antioxidants and Redox Signaling</i> , 2015 , 23, 880-92	8.4	50	
175	Involvement of bone marrow cells and neuroinflammation in hypertension. Circulation Research,	15.7	116	
	2015 , 117, 178-91	-5.7		

173	Oral delivery of Angiotensin-converting enzyme 2 and Angiotensin-(1-7) bioencapsulated in plant cells attenuates pulmonary hypertension. <i>Hypertension</i> , 2014 , 64, 1248-59	8.5	107
172	Neuroinflammation in pulmonary hypertension: concept, facts, and relevance. <i>Current Hypertension Reports</i> , 2014 , 16, 469	4.7	10
171	Functional neural-bone marrow pathways: implications in hypertension and cardiovascular disease. <i>Hypertension</i> , 2014 , 63, e129-39	8.5	32
170	Direct pro-inflammatory effects of prorenin on microglia. <i>PLoS ONE</i> , 2014 , 9, e92937	3.7	57
169	Vasoreparative dysfunction of CD34+ cells in diabetic individuals involves hypoxic desensitization and impaired autocrine/paracrine mechanisms. <i>PLoS ONE</i> , 2014 , 9, e93965	3.7	42
168	Altered inflammatory response is associated with an impaired autonomic input to the bone marrow in the spontaneously hypertensive rat. <i>Hypertension</i> , 2014 , 63, 542-50	8.5	70
167	CNS inflammation and bone marrow neuropathy in type 1 diabetes. <i>American Journal of Pathology</i> , 2013 , 183, 1608-20	5.8	46
166	Diminazene aceturate improves autonomic modulation in pulmonary hypertension. <i>European Journal of Pharmacology</i> , 2013 , 713, 89-93	5.3	33
165	Diminazene attenuates pulmonary hypertension and improves angiogenic progenitor cell functions in experimental models. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2013 , 187, 648-57	10.2	117
164	Neuroimmune communication in hypertension and obesity: a new therapeutic angle?. <i>Pharmacology & Therapeutics</i> , 2013 , 138, 428-40	13.9	39
163	Activation of the ACE2/angiotensin-(1-7)/Mas receptor axis enhances the reparative function of dysfunctional diabetic endothelial progenitors. <i>Diabetes</i> , 2013 , 62, 1258-69	0.9	83
162	Dysfunctional brain-bone marrow communication: a paradigm shift in the pathophysiology of hypertension. <i>Current Hypertension Reports</i> , 2013 , 15, 377-89	4.7	21
161	Diminazene aceturate enhances angiotensin-converting enzyme 2 activity and attenuates ischemia-induced cardiac pathophysiology. <i>Hypertension</i> , 2013 , 62, 746-52	8.5	84
160	Activation of angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis attenuates the cardiac reactivity to acute emotional stress. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2013 , 305, H1057-67	5.2	38
159	Angiotensin-converting enzyme 2 priming enhances the function of endothelial progenitor cells and their therapeutic efficacy. <i>Hypertension</i> , 2013 , 61, 681-9	8.5	78
158	SMAD1 deficiency in either endothelial or smooth muscle cells can predispose mice to pulmonary hypertension. <i>Hypertension</i> , 2013 , 61, 1044-52	8.5	30
157	Angiotensin-converting enzyme 2 activation improves endothelial function. <i>Hypertension</i> , 2013 , 61, 123	33885	71
156	Lenti-Angiotensin-(111) transduction of Islet+ cardiac progenitor cells improves the reparative capacity in Doxorubicin induced Cardiomyopathy. <i>FASEB Journal</i> , 2013 , 27, 1184.7	0.9	

(2011-2013)

155	Pancreatic ACE2 shedding is associated with impaired glycemia in high fat diet-fed mice <i>FASEB Journal</i> , 2013 , 27, 1154.1	0.9	2
154	P2X7 Receptors Mediate Hormone Release in nerve terminals of the Neurohypophysis (NH). <i>FASEB Journal</i> , 2013 , 27, 935.8	0.9	
153	Genetically Engineered Mesenchymal Stem Cells that Overexpress ACE2 or Angiotensin-(1 1) Show Enhanced Nitric-Oxide Production. <i>FASEB Journal</i> , 2013 , 27, lb689	0.9	
152	ACE2 gene therapy decreases fibrosis in the pancreas of high fat diet-fed mice. <i>FASEB Journal</i> , 2013 , 27, 1154.7	0.9	2
151	Expression of (pro)renin receptor and angiotensin II type 1 receptor on bone marrow-related neurons in the central nervous system. <i>FASEB Journal</i> , 2013 , 27, 1187.15	0.9	
150	Oral administration of an angiotensin-converting enzyme 2 activator ameliorates diabetes-induced cardiac dysfunction. <i>Regulatory Peptides</i> , 2012 , 177, 107-15		61
149	Chronic activation of endogenous angiotensin-converting enzyme 2 protects diabetic rats from cardiovascular autonomic dysfunction. <i>Experimental Physiology</i> , 2012 , 97, 699-709	2.4	23
148	ACE2/Angiotensin-(1-7)/Mas Axis and Cardiovascular Regeneration. <i>Current Hypertension Reviews</i> , 2012 , 8, 35-46	2.3	3
147	ACE2 and Ang-(1-7) confer protection against development of diabetic retinopathy. <i>Molecular Therapy</i> , 2012 , 20, 28-36	11.7	127
146	Brain-mediated dysregulation of the bone marrow activity in angiotensin II-induced hypertension. <i>Hypertension</i> , 2012 , 60, 1316-23	8.5	51
145	New cardiovascular and pulmonary therapeutic strategies based on the Angiotensin-converting enzyme 2/angiotensin-(1-7)/mas receptor axis. <i>International Journal of Hypertension</i> , 2012 , 2012, 14782	5 ^{2.4}	51
144	Dysfunctional bone marrow-derived endothelial progenitor cells in chronic Ang II infusion rat model of hypertension. <i>FASEB Journal</i> , 2012 , 26, 878.7	0.9	
143	In vivo MEMRI reveals persistent activation of the brain autonomic areas by an acute systemic angiotensin II injection. <i>FASEB Journal</i> , 2012 , 26, lb801	0.9	
142	NTS (pro)renin receptor (PRR)-mediated antihypertensive effect involves NF-KappaB-cytokine signaling in the spontaneously hypertensive rats (SHR). <i>FASEB Journal</i> , 2012 , 26, 684.26	0.9	
141	Microglial-neuronal interactions in the paraventricular nucleus (PVN): a potential mechanism underlying neurogenic hypertension. <i>FASEB Journal</i> , 2012 , 26, 891.3	0.9	
140	ACE2, a promising therapeutic target for pulmonary hypertension. <i>Current Opinion in Pharmacology</i> , 2011 , 11, 150-5	5.1	79
139	Angiotensin-converting enzyme 2 activation protects against hypertension-induced cardiac fibrosis involving extracellular signal-regulated kinases. <i>Experimental Physiology</i> , 2011 , 96, 287-94	2.4	90
138	Lentivirus-mediated overexpression of angiotensin-(1-7) attenuated ischaemia-induced cardiac pathophysiology. <i>Experimental Physiology</i> , 2011 , 96, 863-74	2.4	53

137	Cerebroprotection by angiotensin-(1-7) in endothelin-1-induced ischaemic stroke. <i>Experimental Physiology</i> , 2011 , 96, 1084-96	2.4	142
136	Contributions of vascular inflammation in the brainstem for neurogenic hypertension. <i>Respiratory Physiology and Neurobiology</i> , 2011 , 178, 422-8	2.8	61
135	Gene transfer of angiotensin-converting enzyme 2 in the nucleus tractus solitarius improves baroreceptor heart rate reflex in spontaneously hypertensive rats. <i>JRAAS - Journal of the Renin-Angiotensin-Aldosterone System</i> , 2011 , 12, 456-61	3	23
134	Autonomic-immune-vascular interaction: an emerging concept for neurogenic hypertension. <i>Hypertension</i> , 2011 , 57, 1026-33	8.5	144
133	MICROGLIAL ACTIVATION BY THE BRAIN RENIN-ANGIOTENSIN SYSTEM. FASEB Journal, 2011 , 25, 661.2	. 0.9	2
132	Brain targeted (Pro)renin receptor over-expression induces the development of hypertension via modulation of baroreflex sensitivity and renal sympathetic nerve activity in renin transgenic mice. <i>FASEB Journal</i> , 2011 , 25, 1078.10	0.9	
131	Brain cytokines as neuromodulators in cardiovascular control. <i>Clinical and Experimental Pharmacology and Physiology</i> , 2010 , 37, e52-7	3	71
130	ACE2 activation promotes antithrombotic activity. <i>Molecular Medicine</i> , 2010 , 16, 210-5	6.2	108
129	Brain microglial cytokines in neurogenic hypertension. <i>Hypertension</i> , 2010 , 56, 297-303	8.5	289
128	Spectral imaging reveals microvessel physiology and function from anastomoses to thromboses. <i>Journal of Biomedical Optics</i> , 2010 , 15, 011111	3.5	12
127	The angiotensin-converting enzyme 2/angiogenesis-(1-7)/Mas axis confers cardiopulmonary protection against lung fibrosis and pulmonary hypertension. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2010 , 182, 1065-72	10.2	204
126	Therapeutic implications of the vasoprotective axis of the renin-angiotensin system in cardiovascular diseases. <i>Hypertension</i> , 2010 , 55, 207-13	8.5	143
125	Targeting the vasoprotective axis of the renin-angiotensin system: a novel strategic approach to pulmonary hypertensive therapy. <i>Current Hypertension Reports</i> , 2010 , 12, 212-9	4.7	36
124	A current view of brain renin-angiotensin system: Is the (pro)renin receptor the missing link?. <i>Pharmacology & Therapeutics</i> , 2010 , 125, 27-38	13.9	66
123	Central hypertonic NaCl increases cytokine expression in the hypothalamic paraventricular nucleus. <i>FASEB Journal</i> , 2010 , 24, 809.8	0.9	
122	Peripheral activation of ACE2-Ang-(117)-Mas axis reduces the cardiovascular reactivity to acute stress in rats. <i>FASEB Journal</i> , 2010 , 24, 625.6	0.9	
121	Evidence for a depressor action of AT1 receptors in the nucleus of the solitary tract (NTS). <i>FASEB Journal</i> , 2010 , 24, 809.11	0.9	
120	The RNA Binding Complex Translin-Trax Mediates Pro-Excitatory Activity in Neurons. <i>FASEB Journal</i> , 2010 , 24, 794.5	0.9	

119	Activation of the Protective Arm of Renin Angiotensin System (RAS) Corrects the Reparative Dysfunction of Diabetic CD34+ Cells <i>Blood</i> , 2010 , 116, 2637-2637	2.2	
118	Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2009 , 179, 1048-54	10.2	206
117	Shift to an involvement of phosphatidylinositol 3-kinase in angiotensin II actions on nucleus tractus solitarii neurons of the spontaneously hypertensive rat. <i>Circulation Research</i> , 2009 , 105, 1248-55	15.7	26
116	Prevention of pulmonary hypertension by Angiotensin-converting enzyme 2 gene transfer. <i>Hypertension</i> , 2009 , 54, 365-71	8.5	128
115	Phosphate-activated glutaminase-containing neurons in the rat paraventricular nucleus express angiotensin type 1 receptors. <i>Hypertension</i> , 2009 , 54, 845-51	8.5	10
114	"Temporal clustering" of COPD exacerbations may reflect corticosteroid withdrawal. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2009 , 180, 482-3; author reply 483	10.2	
113	Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. <i>Journal of Clinical Investigation</i> , 2009 , 119, 3487-96	15.9	194
112	Paraventricular nucleus (PVN) neurons projecting to the rostral ventrolateral medulla (RVLM) contain both oxytocin and glutamate. <i>FASEB Journal</i> , 2009 , 23, 967.6	0.9	
111	Increased expression of Ndufa10, a subunit of mitochondrial complex 1 in the paraventricular nucleus of the SHR. <i>FASEB Journal</i> , 2009 , 23, 1015.11	0.9	
110	Lenti-viral mediated overexpression of ACE2 or Angiotensin-(1-7) prevents bleomycin-induced pulmonary fibrosis. <i>FASEB Journal</i> , 2009 , 23, 770.7	0.9	
109	Hyperosmotic evoked sympathoexcitation is blocked by overexpression of macrophage inhibitory migration factor (MIF) in the paraventricular nucleus of hypothalamus (PVN). <i>FASEB Journal</i> , 2009 , 23, 792.11	0.9	
108	Characterization of a functional (pro)renin receptor in rat brain neurons. <i>Experimental Physiology</i> , 2008 , 93, 701-8	2.4	51
107	Cardiac overexpression of angiotensin converting enzyme 2 protects the heart from ischemia-induced pathophysiology. <i>Hypertension</i> , 2008 , 51, 712-8	8.5	122
106	Genetic ablation of the BMPR2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension. <i>Circulation</i> , 2008 , 118, 722-30	16.7	196
105	Aminopeptidase A: could it be a novel target for neurogenic hypertension?. <i>Hypertension</i> , 2008 , 51, 127	3845	8
104	Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents. <i>Hypertension</i> , 2008 , 51, 1312-7	8.5	207
103	Area-specific differences in transmitter release in central catecholaminergic neurons of spontaneously hypertensive rats. <i>Hypertension</i> , 2008 , 52, 351-8	8.5	17
102	Cardiovascular protection by angiotensin-converting enzyme 2: a new paradigm. <i>Future Cardiology</i> , 2008 , 4, 175-82	1.3	4

101	Genomic and proteomic approaches for targeting of angiotensin-converting enzyme2 for cardiovascular diseases. <i>Current Opinion in Cardiology</i> , 2008 , 23, 364-9	2.1	11
100	Are we poised to target ACE2 for the next generation of antihypertensives?. <i>Journal of Molecular Medicine</i> , 2008 , 86, 685-90	5.5	23
99	Angiotensin-(1-7) as an antihypertensive, antifibrotic target. Current Hypertension Reports, 2008, 10, 22	:7 ₄ 3 /2	32
98	Role of phosphoinositide-3-kinase (PI3K) in the nucleus of the solitary tract (NTS) in the modulation of baroreceptor reflex function in the hypertensive rat. <i>FASEB Journal</i> , 2008 , 22, 737.34	0.9	
97	Expression of functional Angiotensin II (Ang II) receptors types, AT1R and AT2R, in RVLM neuronal cultures from adult rat brain. <i>FASEB Journal</i> , 2008 , 22, 1210.12	0.9	
96	Characterization of a functional (pro)renin receptor (PRR) in brain neuron. FASEB Journal, 2008, 22, 735	5.169	1
95	Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1-7). <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2007 , 292, H736-42	5.2	281
94	Overexpression of angiotensin-converting enzyme 2 in the rostral ventrolateral medulla causes long-term decrease in blood pressure in the spontaneously hypertensive rats. <i>Hypertension</i> , 2007 , 49, 926-31	8.5	148
93	Lack of macrophage migration inhibitory factor regulation is linked to the increased chronotropic action of angiotensin II in SHR neurons. <i>Hypertension</i> , 2007 , 49, 528-34	8.5	13
92	ACE2: a new target for cardiovascular disease therapeutics. <i>Journal of Cardiovascular Pharmacology</i> , 2007 , 50, 112-9	3.1	132
91	ACE2 overexpression inhibits hypoxia-induced collagen production by cardiac fibroblasts. <i>Clinical Science</i> , 2007 , 113, 357-64	6.5	72
90	Angiotensin-(1៧) prevents cardiac remodeling during angiotensin II-induced hypertension. <i>FASEB Journal</i> , 2007 , 21, A896	0.9	
89	(Pro)renin receptor (PRR) expression in the spontaneously hypertensive rats (SHR) brain. <i>FASEB Journal</i> , 2007 , 21, A1364	0.9	
88	Structure-Based Discovery of Angiotensin-Converting Enzyme 2 (ACE2) Activators. <i>FASEB Journal</i> , 2007 , 21, A1365	0.9	
87	Chronic inhibition of phosphoinositide-3-kinase (PI3K) in the nucleus of the solitary tract (NTS) of hypertensive rats increases blood pressure. <i>FASEB Journal</i> , 2007 , 21, A899	0.9	1
86	Anterograde Tracing of A1 and A5 Efferents Using Phenotypically Restricted Lentivirus Vector Mediated Reporter Gene Expression. <i>FASEB Journal</i> , 2007 , 21, A474	0.9	
85	Therapeutic Potential of Systemic Gene Transfer Strategy for Hypertension and Cardiovascular Disease 2007 , 429-445		15
84	ACE2: A novel therapeutic target for cardiovascular diseases. <i>Progress in Biophysics and Molecular Biology</i> , 2006 , 91, 163-98	4.7	70

83	Potential of gene therapy strategy for the treatment of hypertension. <i>Hypertension</i> , 2006 , 47, 6-9	8.5	21
82	ACE2 gene transfer attenuates hypertension-linked pathophysiological changes in the SHR. <i>Physiological Genomics</i> , 2006 , 27, 12-9	3.6	161
81	Angiotensin-converting enzyme 2 as a novel target for gene therapy for hypertension. <i>Experimental Physiology</i> , 2005 , 90, 299-305	2.4	30
8o	Protection from angiotensin II-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats. <i>Experimental Physiology</i> , 2005 , 90, 783-90	2.4	186
79	Cardiovascular Genomics Themed Issue. Experimental Physiology, 2005, 90, 271-272	2.4	
78	Selective silencing of angiotensin receptor subtype 1a (AT1aR) by RNA interference. <i>Hypertension</i> , 2005 , 45, 115-9	8.5	25
77	NAD(P)H oxidase inhibition attenuates neuronal chronotropic actions of angiotensin II. <i>Circulation Research</i> , 2005 , 96, 659-66	15.7	95
76	Increased PI3-kinase in presympathetic brain areas of the spontaneously hypertensive rat. <i>Circulation Research</i> , 2005 , 96, 277-9	15.7	40
75	Prevention of cardiac hypertrophy by angiotensin II type-2 receptor gene transfer. <i>Hypertension</i> , 2004 , 43, 1233-8	8.5	49
74	Decrease in hypothalamic gamma adducin in rat models of hypertension. <i>Hypertension</i> , 2004 , 43, 324-8	8.5	12
7473	Decrease in hypothalamic gamma adducin in rat models of hypertension. <i>Hypertension</i> , 2004 , 43, 324-8 Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. <i>Hypertension</i> , 2004 , 44, 903-6	8.5	12
	Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. <i>Hypertension</i> , 2004		
73	Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. <i>Hypertension</i> , 2004 , 44, 903-6 Functional genomics as an emerging strategy for the investigation of central mechanisms in	8.5	142
73 72	Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. <i>Hypertension</i> , 2004 , 44, 903-6 Functional genomics as an emerging strategy for the investigation of central mechanisms in experimental hypertension. <i>Progress in Biophysics and Molecular Biology</i> , 2004 , 84, 107-23 Cloning and characterization of a secreted form of angiotensin-converting enzyme 2. <i>Regulatory</i>	8.5	142
73 72 71	Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. <i>Hypertension</i> , 2004 , 44, 903-6 Functional genomics as an emerging strategy for the investigation of central mechanisms in experimental hypertension. <i>Progress in Biophysics and Molecular Biology</i> , 2004 , 84, 107-23 Cloning and characterization of a secreted form of angiotensin-converting enzyme 2. <i>Regulatory Peptides</i> , 2004 , 122, 61-7 Angiotensin II type 2 receptor gene transfer elicits cardioprotective effects in an angiotensin II	8.5	142 15 37
73 72 71 70	Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. <i>Hypertension</i> , 2004 , 44, 903-6 Functional genomics as an emerging strategy for the investigation of central mechanisms in experimental hypertension. <i>Progress in Biophysics and Molecular Biology</i> , 2004 , 84, 107-23 Cloning and characterization of a secreted form of angiotensin-converting enzyme 2. <i>Regulatory Peptides</i> , 2004 , 122, 61-7 Angiotensin II type 2 receptor gene transfer elicits cardioprotective effects in an angiotensin II infusion rat model of hypertension. <i>Physiological Genomics</i> , 2004 , 19, 255-61 Brain renin-angiotensin system dysfunction in hypertension: recent advances and perspectives.	8.5 4·7 3.6	142 15 37 45
73 72 71 70 69	Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. <i>Hypertension</i> , 2004 , 44, 903-6 Functional genomics as an emerging strategy for the investigation of central mechanisms in experimental hypertension. <i>Progress in Biophysics and Molecular Biology</i> , 2004 , 84, 107-23 Cloning and characterization of a secreted form of angiotensin-converting enzyme 2. <i>Regulatory Peptides</i> , 2004 , 122, 61-7 Angiotensin II type 2 receptor gene transfer elicits cardioprotective effects in an angiotensin II infusion rat model of hypertension. <i>Physiological Genomics</i> , 2004 , 19, 255-61 Brain renin-angiotensin system dysfunction in hypertension: recent advances and perspectives. <i>British Journal of Pharmacology</i> , 2003 , 139, 191-202	8.5 4.7 3.6 8.6	142 15 37 45 202

65	Chronotropic action of angiotensin II in neurons via protein kinase C and CaMKII. <i>Hypertension</i> , 2002 , 39, 562-6	8.5	43
64	Hypertension-linked decrease in the expression of brain gamma-adducin. <i>Circulation Research</i> , 2002 , 91, 633-9	15.7	18
63	Large-scale production of retroviral vectors for systemic gene delivery. <i>Methods in Enzymology</i> , 2002 , 346, 562-73	1.7	9
62	Gene therapy for cardiovascular disorders: is there a future?. <i>Annals of the New York Academy of Sciences</i> , 2001 , 953, 31-42	6.5	11
61	Characterization of signal transduction pathway in neurotropic action of angiotensin II in brain neurons. <i>Endocrinology</i> , 2001 , 142, 3502-11	4.8	14
60	Gene therapy in cardiovascular disease. Current status. <i>Molecular Diagnosis and Therapy</i> , 2001 , 1, 55-66		1
59	ANG II-mediated inhibition of neuronal delayed rectifier K+ current: role of protein kinase C-alpha. <i>American Journal of Physiology - Cell Physiology</i> , 2001 , 281, C17-23	5.4	23
58	Angiotensin I-converting enzyme antisense gene therapy causes permanent antihypertensive effects in the SHR. <i>Hypertension</i> , 2000 , 35, 202-8	8.5	18
57	Increased expression of calreticulin is linked to ANG IV-mediated activation of lung endothelial NOS. <i>American Journal of Physiology - Lung Cellular and Molecular Physiology</i> , 1999 , 277, L794-801	5.8	16
56	Reversal of hypertension by angiotensin II type 1 receptor antisense gene therapy in the adult SHR. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 1999 , 277, H1260-4	5.2	10
55	Role of phosphatidylinositol 3-kinase in angiotensin II regulation of norepinephrine neuromodulation in brain neurons of the spontaneously hypertensive rat. <i>Journal of Neuroscience</i> , 1999 , 19, 2413-23	6.6	75
54	Sustained inhibition of angiotensin I-converting enzyme (ACE) expression and long-term antihypertensive action by virally mediated delivery of ACE antisense cDNA. <i>Circulation Research</i> , 1999 , 85, 614-22	15.7	31
53	Angiotensin II type 1 receptor-modulated signaling pathways in neurons. <i>Molecular Neurobiology</i> , 1999 , 19, 25-41	6.2	36
52	AT1 receptor-mediated nuclear translocation of Raf-1 in brain neurons. <i>Journal of Neurochemistry</i> , 1998 , 70, 424-7	6	5
51	Angiotensin II-induced nuclear targeting of the angiotensin type 1 (AT1) receptor in brain neurons. <i>Endocrinology</i> , 1998 , 139, 365-75	4.8	152
50	MAP kinase-independent signaling in angiotensin II regulation of neuromodulation in SHR neurons. <i>Hypertension</i> , 1998 , 32, 473-81	8.5	26
49	Attenuation of ANG II actions by adenovirus delivery of AT1 receptor antisense in neurons and SMC. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 1998 , 274, H719-27	5.2	3
48	Angiotensin IV receptor-mediated activation of lung endothelial NOS is associated with vasorelaxation. <i>American Journal of Physiology - Lung Cellular and Molecular Physiology</i> , 1998 , 275, L106	1 ⁵ 8 ⁸	24

(1991-1997)

47	Angiotensin II-induced phosphorylation of the AT1 receptor from rat brain neurons. <i>Hypertension</i> , 1997 , 30, 351-7	8.5	19
46	Losartan versus gene therapy: chronic control of high blood pressure in spontaneously hypertensive rats. <i>Hypertension</i> , 1997 , 30, 363-70	8.5	32
45	Regulation of neuromodulatory actions of angiotensin II in the brain neurons by the Ras-dependent mitogen-activated protein kinase pathway. <i>Journal of Neuroscience</i> , 1996 , 16, 4047-58	6.6	64
44	AT1 receptor density changes during development of hypertension in hyperinsulinemic rats. <i>Clinical and Experimental Hypertension</i> , 1996 , 18, 793-810	2.2	28
43	Lack of cross talk between alpha1-adrenergic and angiotensin type 1 receptors in neurons of spontaneously hypertensive rat brain. <i>Hypertension</i> , 1996 , 27, 1277-83	8.5	23
42	AT1-receptors and cellular actions of angiotensin II in neuronal cultures of stroke prone-spontaneously hypertensive rat brain. <i>Advances in Experimental Medicine and Biology</i> , 1996 , 396, 71-8	3.6	7
41	Regulation of angiotensin II type 1 receptor mRNA in neuronal cultures of normotensive and spontaneously hypertensive rat brains by phorbol esters and forskolin. <i>Journal of Neurochemistry</i> , 1994 , 62, 2079-84	6	15
40	Peptide receptors in astroglia: focus on angiotensin II and atrial natriuretic peptide. <i>Glia</i> , 1994 , 11, 110	-6 9	41
39	Growth factor-induced neurite growth in primary neuronal cultures of dogs with neuronal ceroid lipofuscinosis. <i>International Journal of Developmental Neuroscience</i> , 1994 , 12, 185-96	2.7	14
38	Immunohistochemical mapping of angiotensin AT1 receptors in the brain. <i>Regulatory Peptides</i> , 1993 , 44, 95-107		126
37	Insulin-like growth factor I receptors and IGF-I actions in neuronal cultures from the brain. <i>Annals of the New York Academy of Sciences</i> , 1993 , 692, 89-101	6.5	19
36	The cellular and physiological actions of insulin in the central nervous system. <i>Neurochemistry International</i> , 1993 , 22, 1-10	4.4	182
35	Insulin stimulates phosphatidylinositol 3-kinase activity in rat neuronal primary cultures. <i>Journal of Neurochemistry</i> , 1993 , 61, 360-3	6	11
34	Angiotensin II type 1 receptor mRNA levels in the brains of normotensive and spontaneously hypertensive rats. <i>Journal of Neurochemistry</i> , 1993 , 60, 1949-52	6	50
33	Developmental Regulation of the Insulin and Insulin-Like Growth Factor Receptors in the Central Nervous System 1993 , 109-127		3
32	Insulin-like growth factor I receptor binding in brains of Alzheimer ß and alcoholic patients. <i>Journal of Neurochemistry</i> , 1992 , 58, 1205-10	6	38
31	Insulin-like growth factor I (IGF-I) receptors and IGF-I action in oligodendrocytes from rat brains. <i>Regulatory Peptides</i> , 1991 , 33, 117-31		38
30	Glucose transporters in central nervous system glucose homeostasis. <i>Advances in Experimental Medicine and Biology</i> , 1991 , 293, 397-404	3.6	4

29	Binding of [125I]-insulin-like growth factor-1 (IGF-1) in brains of Alzheimer B and alcoholic patients. <i>Advances in Experimental Medicine and Biology</i> , 1991 , 293, 483-92	3.6	4
28	Insulin-like growth factor I: a possible modulator of intercellular communication in the brain. <i>Advances in Experimental Medicine and Biology</i> , 1991 , 293, 493-505	3.6	4
27	Regulation of rat brain/HepG2 glucose transporter gene expression by insulin and insulin-like growth factor-I in primary cultures of neuronal and glial cells. <i>Endocrinology</i> , 1989 , 125, 314-20	4.8	110
26	Insulin and IGF-I stimulate phosphorylation of their respective receptors in intact neuronal and glial cells in primary culture. <i>Journal of Molecular Neuroscience</i> , 1989 , 1, 3-8	3.3	34
25	Insulin and insulin-like growth factor receptors in the nervous system. <i>Molecular Neurobiology</i> , 1989 , 3, 71-100	6.2	185
24	Lack of alpha-1-adrenergic receptor-mediated downregulation of angiotensin II receptors in neuronal cultures from spontaneously hypertensive rat brain. <i>Molecular and Cellular Biochemistry</i> , 1989 , 91, 111-5	4.2	5
23	Metabolism of angiotensin peptides by neuronal and glial cultures from rat brain. <i>Journal of Neurochemistry</i> , 1989 , 52, 863-8	6	16
22	Alpha 2-adrenergic receptors in neuronal and glial cultures: characterization and comparison. <i>Journal of Neurochemistry</i> , 1989 , 53, 287-96	6	19
21	Development of brain insulin receptors. <i>International Journal of Biochemistry & Cell Biology</i> , 1988 , 20, 225-30		16
20	Insulin receptors in the brain: structural and physiological characterization. <i>Neurochemical Research</i> , 1988 , 13, 297-303	4.6	64
19	Biosynthesis of angiotensinogen and angiotensins by brain cells in primary culture. <i>Journal of Neurochemistry</i> , 1988 , 51, 398-405	6	21
18	Insulin receptors and insulin action in dissociated brain cells. <i>Brain Research</i> , 1987 , 417, 247-56	3.7	58
17	Protein kinase C agonists increase the expression of angiotensin II receptors in neuronal cultures. <i>Journal of Neurochemistry</i> , 1987 , 48, 1954-61	6	14
16	Physiologically Unique Insulin Receptors on Neuronal Cells 1987 , 191-200		5
15	Insulin Downregulates Alpha-2 Adrenergic Receptors in Cultured Glial Cells 1987 , 209-214		5
14	Evidence for Central Nervous System Insulin Synthesis 1987 , 121-130		2
13	Insulin is released from rat brain neuronal cells in culture. <i>Journal of Neurochemistry</i> , 1986 , 47, 831-6	6	131
12	Alpha 1-adrenergic receptor-mediated downregulation of angiotensin II receptors in neuronal cultures. <i>Journal of Neurochemistry</i> , 1986 , 47, 1117-26	6	28

LIST OF PUBLICATIONS

11	Alpha 1-adrenergic receptors in neuronal cultures from rat brain: increased expression in the spontaneously hypertensive rat. <i>Journal of Neurochemistry</i> , 1986 , 47, 1190-8	6	17	
10	Characteristics of the beta-adrenoreceptor from neuronal and glial cells in primary cultures of rat brain. <i>Journal of Neurochemistry</i> , 1986 , 47, 1318-26	6	23	
9	Insulin inhibits specific norepinephrine uptake in neuronal cultures from rat brain. <i>Brain Research</i> , 1986 , 398, 1-5	3.7	53	
8	Development of brain insulin receptors: structural and functional studies of insulin receptors from whole brain and primary cell cultures. <i>Endocrinology</i> , 1986 , 119, 25-35	4.8	112	
7	Increased turnover of surface insulin receptors in fibroblastic cultures from genetically diabetic (DB/DB) mice. <i>Journal of Cellular Biochemistry</i> , 1985 , 28, 59-67	4.7	2	
6	Insulin inhibits pyramidal neurons in hippocampal slices. <i>Brain Research</i> , 1984 , 309, 187-91	3.7	147	
5	Localization of insulin-like immunoreactivity in the neurons from primary cultures of rat brain. <i>Experimental Cell Research</i> , 1983 , 143, 351-7	4.2	111	
4	Adult-level insulin binding is present in term fetal rat CNS membranes. <i>Brain Research</i> , 1982 , 249, 390-	2 3.7	43	
3	Effects of insulin on cultured rat brain cells: stimulation of ornithine decarboxylase activity. <i>Journal of Neurochemistry</i> , 1981 , 36, 1050-7	6	48	
2	Binding of [125I]insulin to specific receptors and stimulation of nucleotide incorporation in cells cultured from rat brain. <i>Brain Research</i> , 1980 , 200, 389-400	3.7	107	
1	Novel Role of Macrophage Migration Inhibitory Factor in Angiotensin II Regulation of Neuromodulation in Rat Brain		8	