List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11644171/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin<br>System. Circulation Research, 2020, 126, 1456-1474.                                                                                           | 2.0 | 1,478     |
| 2  | Gut Dysbiosis Is Linked to Hypertension. Hypertension, 2015, 65, 1331-1340.                                                                                                                                                                  | 1.3 | 1,079     |
| 3  | The gut microbiota and the brain–gut–kidney axis in hypertension and chronic kidney disease. Nature<br>Reviews Nephrology, 2018, 14, 442-456.                                                                                                | 4.1 | 413       |
| 4  | Hypertension-Linked Pathophysiological Alterations in the Gut. Circulation Research, 2017, 120, 312-323.                                                                                                                                     | 2.0 | 374       |
| 5  | Brain Microglial Cytokines in Neurogenic Hypertension. Hypertension, 2010, 56, 297-303.                                                                                                                                                      | 1.3 | 336       |
| 6  | Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clinical Science, 2018, 132, 701-718.                                                                                        | 1.8 | 328       |
| 7  | Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression. Gut, 2018, 67, 1555.2-1557.                                              | 6.1 | 318       |
| 8  | Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1–7). American Journal of<br>Physiology - Heart and Circulatory Physiology, 2007, 292, H736-H742.                                                                    | 1.5 | 309       |
| 9  | Structure-Based Identification of Small-Molecule Angiotensin-Converting Enzyme 2 Activators as Novel Antihypertensive Agents. Hypertension, 2008, 51, 1312-1317.                                                                             | 1.3 | 244       |
| 10 | The Angiotensin-Converting Enzyme 2/Angiogenesis-(1–7)/Mas Axis Confers Cardiopulmonary<br>Protection against Lung Fibrosis and Pulmonary Hypertension. American Journal of Respiratory and<br>Critical Care Medicine, 2010, 182, 1065-1072. | 2.5 | 241       |
| 11 | Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. Journal of Clinical Investigation, 2009, 119, 3487-96.                                                                    | 3.9 | 238       |
| 12 | Evidence for Angiotensin-converting Enzyme 2 as a Therapeutic Target for the Prevention of<br>Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2009, 179,<br>1048-1054.                                   | 2.5 | 233       |
| 13 | Genetic Ablation of the <i>Bmpr2</i> Gene in Pulmonary Endothelium Is Sufficient to Predispose to Pulmonary Arterial Hypertension. Circulation, 2008, 118, 722-730.                                                                          | 1.6 | 222       |
| 14 | Brain renin-angiotensin system dysfunction in hypertension: recent advances and perspectives. British<br>Journal of Pharmacology, 2003, 139, 191-202.                                                                                        | 2.7 | 221       |
| 15 | Protection from angiotensin II-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats. Experimental Physiology, 2005, 90, 783-790.                                                                         | 0.9 | 214       |
| 16 | Insulin and insulin-like growth factor receptors in the nervous system. Molecular Neurobiology, 1989, 3, 71-100.                                                                                                                             | 1.9 | 204       |
| 17 | The cellular and physiological actions of insulin in the central nervous system. Neurochemistry International, 1993, 22, 1-10.                                                                                                               | 1.9 | 201       |
| 18 | ACE2 gene transfer attenuates hypertension-linked pathophysiological changes in the SHR.<br>Physiological Genomics, 2006, 27, 12-19.                                                                                                         | 1.0 | 181       |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Structure-Based Discovery of a Novel Angiotensin-Converting Enzyme 2 Inhibitor. Hypertension, 2004, 44, 903-906.                                                                                                  | 1.3 | 171       |
| 20 | Insulin inhibits pyramidal neurons in hippocampal slices. Brain Research, 1984, 309, 187-191.                                                                                                                     | 1.1 | 170       |
| 21 | Cerebroprotection by angiotensin-(1-7) in endothelin-1-induced ischaemic stroke. Experimental<br>Physiology, 2011, 96, 1084-1096.                                                                                 | 0.9 | 169       |
| 22 | Therapeutic Implications of the Vasoprotective Axis of the Renin-Angiotensin System in Cardiovascular Diseases. Hypertension, 2010, 55, 207-213.                                                                  | 1.3 | 159       |
| 23 | Angiotensin II-Induced Nuclear Targeting of the Angiotensin Type 1 (AT1) Receptor in Brain Neurons*.<br>Endocrinology, 1998, 139, 365-375.                                                                        | 1.4 | 158       |
| 24 | Overexpression of Angiotensin-Converting Enzyme 2 in the Rostral Ventrolateral Medulla Causes<br>Long-Term Decrease in Blood Pressure in the Spontaneously Hypertensive Rats. Hypertension, 2007, 49,<br>926-931. | 1.3 | 157       |
| 25 | Autonomic-Immune-Vascular Interaction. Hypertension, 2011, 57, 1026-1033.                                                                                                                                         | 1.3 | 157       |
| 26 | ACE2: A New Target for Cardiovascular Disease Therapeutics. Journal of Cardiovascular<br>Pharmacology, 2007, 50, 112-119.                                                                                         | 0.8 | 156       |
| 27 | Efficient large-scale production and concentration of HIV-1-based lentiviral vectors for use in vivo.<br>Physiological Genomics, 2003, 12, 221-228.                                                               | 1.0 | 154       |
| 28 | Insulin Is Released from Rat Brain Neuronal Cells in Culture. Journal of Neurochemistry, 1986, 47,<br>831-836.                                                                                                    | 2.1 | 151       |
| 29 | Diminazene Attenuates Pulmonary Hypertension and Improves Angiogenic Progenitor Cell Functions in Experimental Models. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 648-657.            | 2.5 | 150       |
| 30 | Critical Role of the Interaction Gut Microbiota – Sympathetic Nervous System in the Regulation of<br>Blood Pressure. Frontiers in Physiology, 2019, 10, 231.                                                      | 1.3 | 148       |
| 31 | Involvement of Bone Marrow Cells and Neuroinflammation in Hypertension. Circulation Research, 2015, 117, 178-191.                                                                                                 | 2.0 | 147       |
| 32 | ACE2 and Ang-(1-7) Confer Protection Against Development of Diabetic Retinopathy. Molecular Therapy, 2012, 20, 28-36.                                                                                             | 3.7 | 143       |
| 33 | Immunohistochemical mapping of angiotensin AT1 receptors in the brain. Regulatory Peptides, 1993, 44, 95-107.                                                                                                     | 1.9 | 138       |
| 34 | Cardiac Overexpression of Angiotensin Converting Enzyme 2 Protects the Heart From<br>Ischemia-Induced Pathophysiology. Hypertension, 2008, 51, 712-718.                                                           | 1.3 | 138       |
| 35 | Prevention of Pulmonary Hypertension by Angiotensin-Converting Enzyme 2 Gene Transfer.<br>Hypertension, 2009, 54, 365-371.                                                                                        | 1.3 | 138       |
| 36 | Altered Gut Microbiome Profile in Patients With Pulmonary Arterial Hypertension. Hypertension, 2020, 75, 1063-1071.                                                                                               | 1.3 | 130       |

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Oral Delivery of Angiotensin-Converting Enzyme 2 and Angiotensin-(1-7) Bioencapsulated in Plant Cells<br>Attenuates Pulmonary Hypertension. Hypertension, 2014, 64, 1248-1259.                        | 1.3 | 126       |
| 38 | Regulation of Rat Brain/HepG2 Glucose Transporter Gene Expression by Insulin and Insulin-Like<br>Growth Factor-I in Primary Cultures of Neuronal and Glial Cells*. Endocrinology, 1989, 125, 314-320. | 1.4 | 125       |
| 39 | Development of Brain Insulin Receptors: Structural and Functional Studies of Insulin Receptors from Whole Brain and Primary Cell Cultures*. Endocrinology, 1986, 119, 25-35.                          | 1.4 | 124       |
| 40 | ACE2 Activation Promotes Antithrombotic Activity. Molecular Medicine, 2010, 16, 210-215.                                                                                                              | 1.9 | 122       |
| 41 | Localization of insulin-like immunoreactivity in the neurons from primary cultures of rat brain.<br>Experimental Cell Research, 1983, 143, 351-357.                                                   | 1.2 | 117       |
| 42 | Binding of [125]insulin to specific receptors and stimulation of nucleotide incorporation in cells cultured from rat brain. Brain Research, 1980, 200, 389-400.                                       | 1.1 | 115       |
| 43 | Probiotics Prevent Dysbiosis and the Rise in Blood Pressure in Genetic Hypertension: Role of<br>Shortâ€Chain Fatty Acids. Molecular Nutrition and Food Research, 2020, 64, e1900616.                  | 1.5 | 113       |
| 44 | Diminazene Aceturate Enhances Angiotensin-Converting Enzyme 2 Activity and Attenuates<br>Ischemia-Induced Cardiac Pathophysiology. Hypertension, 2013, 62, 746-752.                                   | 1.3 | 109       |
| 45 | The Gut, Its Microbiome, and Hypertension. Current Hypertension Reports, 2017, 19, 36.                                                                                                                | 1.5 | 103       |
| 46 | NAD(P)H Oxidase Inhibition Attenuates Neuronal Chronotropic Actions of Angiotensin II. Circulation Research, 2005, 96, 659-666.                                                                       | 2.0 | 99        |
| 47 | Angiotensin-converting enzyme 2 activation protects against hypertension-induced cardiac fibrosis<br>involving extracellular signal-regulated kinases. Experimental Physiology, 2011, 96, 287-294.    | 0.9 | 98        |
| 48 | ACE2, a promising therapeutic target for pulmonary hypertension. Current Opinion in Pharmacology, 2011, 11, 150-155.                                                                                  | 1.7 | 95        |
| 49 | Brain–Gut–Bone Marrow Axis. Circulation Research, 2016, 118, 1327-1336.                                                                                                                               | 2.0 | 95        |
| 50 | ACE2 and Microbiota. Journal of Cardiovascular Pharmacology, 2015, 66, 540-550.                                                                                                                       | 0.8 | 94        |
| 51 | Activation of the ACE2/Angiotensin-(1–7)/Mas Receptor Axis Enhances the Reparative Function of<br>Dysfunctional Diabetic Endothelial Progenitors. Diabetes, 2013, 62, 1258-1269.                      | 0.3 | 91        |
| 52 | Angiotensin-Converting Enzyme 2 Priming Enhances the Function of Endothelial Progenitor Cells and<br>Their Therapeutic Efficacy. Hypertension, 2013, 61, 681-689.                                     | 1.3 | 91        |
| 53 | Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors. Neuropharmacology, 2016, 105, 114-123.                    | 2.0 | 91        |
| 54 | Altered Inflammatory Response Is Associated With an Impaired Autonomic Input to the Bone Marrow in the Spontaneously Hypertensive Rat. Hypertension, 2014, 63, 542-550.                               | 1.3 | 90        |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | ACE2 overexpression inhibits hypoxia-induced collagen production by cardiac fibroblasts. Clinical Science, 2007, 113, 357-364.                                                                                   | 1.8 | 89        |
| 56 | Intestinal Permeability Biomarker Zonulin is Elevated in Healthy Aging. Journal of the American Medical Directors Association, 2017, 18, 810.e1-810.e4.                                                          | 1.2 | 89        |
| 57 | Microglial Cells Impact Gut Microbiota and Gut Pathology in Angiotensin II-Induced Hypertension.<br>Circulation Research, 2019, 124, 727-736.                                                                    | 2.0 | 89        |
| 58 | Brain cytokines as neuromodulators in cardiovascular control. Clinical and Experimental Pharmacology and Physiology, 2010, 37, e52-7.                                                                            | 0.9 | 82        |
| 59 | ACE2: A novel therapeutic target for cardiovascular diseases. Progress in Biophysics and Molecular<br>Biology, 2006, 91, 163-198.                                                                                | 1.4 | 81        |
| 60 | Angiotensin-Converting Enzyme 2 Activation Improves Endothelial Function. Hypertension, 2013, 61, 1233-1238.                                                                                                     | 1.3 | 80        |
| 61 | Expression of Human ACE2 in Lactobacillus and Beneficial Effects in Diabetic Retinopathy in Mice.<br>Molecular Therapy - Methods and Clinical Development, 2019, 14, 161-170.                                    | 1.8 | 78        |
| 62 | Role of Phosphatidylinositol 3-Kinase in Angiotensin II Regulation of Norepinephrine<br>Neuromodulation in Brain Neurons of the Spontaneously Hypertensive Rat. Journal of Neuroscience,<br>1999, 19, 2413-2423. | 1.7 | 77        |
| 63 | A current view of brain renin–angiotensin system: Is the (pro)renin receptor the missing link?. , 2010, 125, 27-38.                                                                                              |     | 77        |
| 64 | Impaired Autonomic Nervous System-Microbiome Circuit in Hypertension. Circulation Research, 2019, 125, 104-116.                                                                                                  | 2.0 | 73        |
| 65 | Direct Pro-Inflammatory Effects of Prorenin on Microglia. PLoS ONE, 2014, 9, e92937.                                                                                                                             | 1.1 | 70        |
| 66 | Upregulation of Angiotensin (1-7)-Mediated Signaling Preserves Endothelial Function Through<br>Reducing Oxidative Stress in Diabetes. Antioxidants and Redox Signaling, 2015, 23, 880-892.                       | 2.5 | 70        |
| 67 | Oral administration of an angiotensin-converting enzyme 2 activator ameliorates diabetes-induced cardiac dysfunction. Regulatory Peptides, 2012, 177, 107-115.                                                   | 1.9 | 69        |
| 68 | Impact of antibiotics on arterial blood pressure in a patient with resistant hypertension — A case report. International Journal of Cardiology, 2015, 201, 157-158.                                              | 0.8 | 69        |
| 69 | Insulin receptors in the brain: Structural and physiological characterization. Neurochemical Research, 1988, 13, 297-303.                                                                                        | 1.6 | 68        |
| 70 | Regulation of Neuromodulatory Actions of Angiotensin II in the Brain Neurons by the Ras-Dependent<br>Mitogen-Activated Protein Kinase Pathway. Journal of Neuroscience, 1996, 16, 4047-4058.                     | 1.7 | 67        |
| 71 | Contributions of vascular inflammation in the brainstem for neurogenic hypertension. Respiratory<br>Physiology and Neurobiology, 2011, 178, 422-428.                                                             | 0.7 | 65        |
| 72 | Characterization of a functional (pro)renin receptor in rat brain neurons. Experimental Physiology, 2008, 93, 701-708.                                                                                           | 0.9 | 64        |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Sustained Captoprilâ€Induced Reduction in Blood Pressure Is Associated With Alterations in Gutâ€Brain<br>Axis in the Spontaneously Hypertensive Rat. Journal of the American Heart Association, 2019, 8, e010721.                                 | 1.6 | 63        |
| 74 | Lentivirus-mediated overexpression of angiotensin-(1-7) attenuated ischaemia-induced cardiac pathophysiology. Experimental Physiology, 2011, 96, 863-874.                                                                                         | 0.9 | 62        |
| 75 | Insulin receptors and insulin action in dissociated brain cells. Brain Research, 1987, 417, 247-256.                                                                                                                                              | 1.1 | 61        |
| 76 | SARS-CoV-2 Infections and ACE2: Clinical Outcomes Linked With Increased Morbidity and Mortality in Individuals With Diabetes. Diabetes, 2020, 69, 1875-1886.                                                                                      | 0.3 | 61        |
| 77 | New Cardiovascular and Pulmonary Therapeutic Strategies Based on the Angiotensin-Converting<br>Enzyme 2/Angiotensin-(1–7)/Mas Receptor Axis. International Journal of Hypertension, 2012, 2012, 1-13.                                             | 0.5 | 59        |
| 78 | ACE2 (Angiotensin-Converting Enzyme 2) in Cardiopulmonary Diseases. Hypertension, 2020, 76, 651-661.                                                                                                                                              | 1.3 | 57        |
| 79 | Insulin inhibits specific norepinephrine uptake in neuronal cultures from rat brain. Brain Research,<br>1986, 398, 1-5.                                                                                                                           | 1.1 | 55        |
| 80 | Prevention of Cardiac Hypertrophy by Angiotensin II Type-2 Receptor Gene Transfer. Hypertension, 2004, 43, 1233-1238.                                                                                                                             | 1.3 | 55        |
| 81 | Brain-Mediated Dysregulation of the Bone Marrow Activity in Angiotensin Il–Induced Hypertension.<br>Hypertension, 2012, 60, 1316-1323.                                                                                                            | 1.3 | 55        |
| 82 | Vasoreparative Dysfunction of CD34+ Cells in Diabetic Individuals Involves Hypoxic Desensitization and Impaired Autocrine/Paracrine Mechanisms. PLoS ONE, 2014, 9, e93965.                                                                        | 1.1 | 54        |
| 83 | Angiotensin II Type 1 Receptor mRNA Levels in the Brains of Normotensive and Spontaneously<br>Hypertensive Rats. Journal of Neurochemistry, 1993, 60, 1949-1952.                                                                                  | 2.1 | 53        |
| 84 | CNS Inflammation and Bone Marrow Neuropathy in Type 1 Diabetes. American Journal of Pathology, 2013, 183, 1608-1620.                                                                                                                              | 1.9 | 53        |
| 85 | Report of the National Heart, Lung, and Blood Institute Working Group on the Role of Microbiota in<br>Blood Pressure Regulation. Hypertension, 2017, 70, 479-485.                                                                                 | 1.3 | 53        |
| 86 | The Selective Angiotensin II Type 2 Receptor Agonist, Compound 21, Attenuates the Progression of Lung<br>Fibrosis and Pulmonary Hypertension in an Experimental Model of Bleomycin-Induced Lung Injury.<br>Frontiers in Physiology, 2018, 9, 180. | 1.3 | 53        |
| 87 | Effects of Insulin on Cultured Rat Brain Cells: Stimulation of Ornithine Decarboxylase Activity.<br>Journal of Neurochemistry, 1981, 36, 1050-1057.                                                                                               | 2.1 | 51        |
| 88 | Angiotensin II Regulation of Proliferation, Differentiation, and Engraftment of Hematopoietic Stem<br>Cells. Hypertension, 2016, 67, 574-584.                                                                                                     | 1.3 | 50        |
| 89 | Angiotensin-converting enzyme 2 inhibits high-mobility group box 1 and attenuates cardiac dysfunction post-myocardial ischemia. Journal of Molecular Medicine, 2016, 94, 37-49.                                                                   | 1.7 | 50        |
| 90 | Maternal Treatment With Captopril Persistently Alters Gut-Brain Communication and Attenuates Hypertension of Male Offspring. Hypertension, 2020, 75, 1315-1324.                                                                                   | 1.3 | 50        |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Angiotensin II type 2 receptor gene transfer elicits cardioprotective effects in an angiotensin II infusion rat model of hypertension. Physiological Genomics, 2004, 19, 255-261.                                                | 1.0 | 49        |
| 92  | Blood Pressure–Independent Attenuation of Cardiac Hypertrophy by AT 1 R-AS Gene Therapy.<br>Hypertension, 2002, 39, 969-975.                                                                                                     | 1.3 | 48        |
| 93  | Adult-level insulin binding is present in term fetal rat CNS membranes. Brain Research, 1982, 249, 390-392.                                                                                                                      | 1.1 | 47        |
| 94  | Gut microbiota and serum metabolite differences in African Americans and White Americans with high blood pressure. International Journal of Cardiology, 2018, 271, 336-339.                                                      | 0.8 | 47        |
| 95  | Depression phenotype identified by using single nucleotide exact amplicon sequence variants of the human gut microbiome. Molecular Psychiatry, 2021, 26, 4277-4287.                                                              | 4.1 | 46        |
| 96  | Gut Microbiome and Neuroinflammation in Hypertension. Circulation Research, 2022, 130, 401-417.                                                                                                                                  | 2.0 | 46        |
| 97  | Increased PI3-Kinase in Presympathetic Brain Areas of the Spontaneously Hypertensive Rat. Circulation Research, 2005, 96, 277-279.                                                                                               | 2.0 | 45        |
| 98  | Probiotic <i>Bifidobacterium breve</i> prevents DOCAâ€salt hypertension. FASEB Journal, 2020, 34, 13626-13640.                                                                                                                   | 0.2 | 45        |
| 99  | Butyrate Regulates COVID-19–Relevant Genes in Gut Epithelial Organoids From Normotensive Rats.<br>Hypertension, 2021, 77, e13-e16.                                                                                               | 1.3 | 45        |
| 100 | Therapeutic potential of adipose stem cellâ€derived conditioned medium against pulmonary<br>hypertension and lung fibrosis. British Journal of Pharmacology, 2016, 173, 2859-2879.                                               | 2.7 | 44        |
| 101 | Chronotropic Action of Angiotensin II in Neurons via Protein Kinase C and CaMKII. Hypertension, 2002, 39, 562-566.                                                                                                               | 1.3 | 43        |
| 102 | Cloning and characterization of a secreted form of angiotensin-converting enzyme 2. Regulatory Peptides, 2004, 122, 61-67.                                                                                                       | 1.9 | 43        |
| 103 | Activation of angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis attenuates the cardiac reactivity to acute emotional stress. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1057-H1067. | 1.5 | 43        |
| 104 | Peptide receptors in astroglia: Focus on angiotensin II and atrial natriuretic peptide. Clia, 1994, 11,<br>110-116.                                                                                                              | 2.5 | 42        |
| 105 | Insulin-like growth factor I (IGF-I) receptors and IGF-I action in oligodendrocytes from rat brains.<br>Regulatory Peptides, 1991, 33, 117-131.                                                                                  | 1.9 | 41        |
| 106 | Targeting the Vasoprotective Axis of the Renin-Angiotensin System: A Novel Strategic Approach to Pulmonary Hypertensive Therapy. Current Hypertension Reports, 2010, 12, 212-219.                                                | 1.5 | 41        |
| 107 | Neuroimmune communication in hypertension and obesity: A new therapeutic angle?. , 2013, 138, 428-440.                                                                                                                           |     | 41        |
| 108 | SMAD1 Deficiency in Either Endothelial or Smooth Muscle Cells Can Predispose Mice to Pulmonary<br>Hypertension. Hypertension, 2013, 61, 1044-1052.                                                                               | 1.3 | 41        |

| #   | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Anti-hypertensive Effects of Diminazene Aceturate: An Angiotensin- Converting Enzyme 2 Activator in<br>Rats. Protein and Peptide Letters, 2015, 23, 9-16.                                                         | 0.4 | 41        |
| 110 | Gut Pathology and Its Rescue by ACE2 (Angiotensin-Converting Enzyme 2) in Hypoxia-Induced<br>Pulmonary Hypertension. Hypertension, 2020, 76, 206-216.                                                             | 1.3 | 41        |
| 111 | Insulin-Like Growth Factor I Receptor Binding in Brains of Alzheimer's and Alcoholic Patients. Journal of Neurochemistry, 1992, 58, 1205-1210.                                                                    | 2.1 | 40        |
| 112 | ACE2/Ang-(1–7)/Mas axis stimulates vascular repair-relevant functions of CD34 <sup>+</sup> cells.<br>American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1697-H1707.                   | 1.5 | 40        |
| 113 | Angiotensin II type 1 receptor-modulated signaling pathways in neurons. Molecular Neurobiology, 1999, 19, 25-41.                                                                                                  | 1.9 | 39        |
| 114 | Functional Neural–Bone Marrow Pathways. Hypertension, 2014, 63, e129-39.                                                                                                                                          | 1.3 | 39        |
| 115 | Losartan Versus Gene Therapy. Hypertension, 1997, 30, 363-370.                                                                                                                                                    | 1.3 | 39        |
| 116 | A Single Angiotensin II Hypertensive Stimulus Is Associated with Prolonged Neuronal and Immune<br>System Activation in Wistar-Kyoto Rats. Frontiers in Physiology, 2017, 8, 592.                                  | 1.3 | 38        |
| 117 | Coupling corticotropin-releasing-hormone and angiotensin converting enzyme 2 dampens stress responsiveness in male mice. Neuropharmacology, 2018, 133, 85-93.                                                     | 2.0 | 38        |
| 118 | Sustained Inhibition of Angiotensin I–Converting Enzyme (ACE) Expression and Long-Term<br>Antihypertensive Action by Virally Mediated Delivery of ACE Antisense cDNA. Circulation Research,<br>1999, 85, 614-622. | 2.0 | 37        |
| 119 | Angiotensin-(1-7) as an antihypertensive, antifibrotic target. Current Hypertension Reports, 2008, 10, 227-232.                                                                                                   | 1.5 | 37        |
| 120 | Diminazene aceturate improves autonomic modulation in pulmonary hypertension. European Journal of Pharmacology, 2013, 713, 89-93.                                                                                 | 1.7 | 37        |
| 121 | Gut Microbiota. Circulation Research, 2017, 120, 1724-1726.                                                                                                                                                       | 2.0 | 36        |
| 122 | Insulin and IGF-I stimulate phosphorylation of their respective receptors in intact neuronal and glial cells in primary culture. Journal of Molecular Neuroscience, 1989, 1, 3-8.                                 | 1.1 | 35        |
| 123 | Angiotensin IV receptor-mediated activation of lung endothelial NOS is associated with<br>vasorelaxation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275,<br>L1061-L1068.     | 1.3 | 34        |
| 124 | Angiotensinâ€converting enzyme 2 as a novel target for gene therapy for hypertension. Experimental<br>Physiology, 2005, 90, 299-305.                                                                              | 0.9 | 34        |
| 125 | Involvement of Neuroinflammation in the Pathogenesis of Monocrotaline-Induced Pulmonary<br>Hypertension. Hypertension, 2018, 71, 1156-1163.                                                                       | 1.3 | 34        |
| 126 | At1Receptor Density Changes During Development of Hypertension in Hyperinsulinemic Rats. Clinical and Experimental Hypertension, 1996, 18, 793-810.                                                               | 0.5 | 31        |

| #   | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | α <sub>1</sub> â€Adrenergic Receptorâ€Mediated Downregulation of Angiotensin II Receptors in Neuronal<br>Cultures. Journal of Neurochemistry, 1986, 47, 1117-1126.                                                                                   | 2.1 | 30        |
| 128 | Shift to an Involvement of Phosphatidylinositol 3-Kinase in Angiotensin II Actions on Nucleus Tractus<br>Solitarii Neurons of the Spontaneously Hypertensive Rat. Circulation Research, 2009, 105, 1248-1255.                                        | 2.0 | 30        |
| 129 | Selective Silencing of Angiotensin Receptor Subtype 1a (AT 1a R) by RNA Interference. Hypertension, 2005, 45, 115-119.                                                                                                                               | 1.3 | 29        |
| 130 | Hypertension-linked mechanical changes of rat gut. Acta Biomaterialia, 2016, 45, 296-302.                                                                                                                                                            | 4.1 | 29        |
| 131 | Shifts in the Cut Microbiota Composition Due to Depleted Bone Marrow Beta Adrenergic Signaling Are Associated with Suppressed Inflammatory Transcriptional Networks in the Mouse Colon. Frontiers in Physiology, 2017, 8, 220.                       | 1.3 | 28        |
| 132 | MAP Kinase–Independent Signaling in Angiotensin II Regulation of Neuromodulation in SHR Neurons.<br>Hypertension, 1998, 32, 473-481.                                                                                                                 | 1.3 | 27        |
| 133 | Elevated bone marrow sympathetic drive precedes systemic inflammation in angiotensin II<br>hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H279-H289.                                                    | 1.5 | 27        |
| 134 | Potential of Gene Therapy Strategy for the Treatment of Hypertension. Hypertension, 2006, 47, 6-9.                                                                                                                                                   | 1.3 | 26        |
| 135 | Are we poised to target ACE2 for the next generation of antihypertensives?. Journal of Molecular<br>Medicine, 2008, 86, 685-690.                                                                                                                     | 1.7 | 26        |
| 136 | Angiotensin-(1–7) Expressed From Lactobacillus Bacteria Protect Diabetic Retina in Mice. Translational<br>Vision Science and Technology, 2020, 9, 20.                                                                                                | 1.1 | 26        |
| 137 | ANG II-mediated inhibition of neuronal delayed rectifier K+ current: role of protein kinase C-α. American<br>Journal of Physiology - Cell Physiology, 2001, 281, C17-C23.                                                                            | 2.1 | 25        |
| 138 | Chronic activation of endogenous angiotensinâ€converting enzyme 2 protects diabetic rats from cardiovascular autonomic dysfunction. Experimental Physiology, 2012, 97, 699-709.                                                                      | 0.9 | 25        |
| 139 | Pulmonary hypertension: Pathophysiology beyond the lung. Pharmacological Research, 2020, 151, 104518.                                                                                                                                                | 3.1 | 25        |
| 140 | Lack of Cross Talk Between α <sub>1</sub> -Adrenergic and Angiotensin Type 1 Receptors in Neurons of<br>Spontaneously Hypertensive Rat Brain. Hypertension, 1996, 27, 1277-1283.                                                                     | 1.3 | 25        |
| 141 | Characteristics of the βâ€Adrenoreceptor from Neuronal and Glial Cells in Primary Cultures of Rat<br>Brain. Journal of Neurochemistry, 1986, 47, 1318-1326.                                                                                          | 2.1 | 24        |
| 142 | Gene transfer of angiotensin-converting enzyme 2 in the nucleus tractus solitarius improves<br>baroreceptor heart rate reflex in spontaneously hypertensive rats. JRAAS - Journal of the<br>Renin-Angiotensin-Aldosterone System, 2011, 12, 456-461. | 1.0 | 24        |
| 143 | Dysfunctional Brain-bone Marrow Communication: A Paradigm Shift in the Pathophysiology of Hypertension. Current Hypertension Reports, 2013, 15, 377-389.                                                                                             | 1.5 | 24        |
| 144 | Report of the National Heart, Lung, and Blood Institute Working Group on Hypertension.<br>Hypertension, 2020, 75, 902-917.                                                                                                                           | 1.3 | 24        |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Angiotensin l–Converting Enzyme Antisense Gene Therapy Causes Permanent Antihypertensive Effects<br>in the SHR. Hypertension, 2000, 35, 202-208.                                                        | 1.3 | 22        |
| 146 | Hypertension-Linked Decrease in the Expression of Brain Î <sup>3</sup> -Adducin. Circulation Research, 2002, 91, 633-639.                                                                               | 2.0 | 22        |
| 147 | Pulmonary arterial hypertension-associated changes in gut pathology and microbiota. ERJ Open Research, 2020, 6, 00253-2019.                                                                             | 1.1 | 22        |
| 148 | Biosynthesis of Angiotensinogen and Angiotensins by Brain Cells in Primary Culture. Journal of Neurochemistry, 1988, 51, 398-405.                                                                       | 2.1 | 21        |
| 149 | Angiotensin II–Induced Phosphorylation of the AT 1 Receptor From Rat Brain Neurons. Hypertension, 1997, 30, 351-357.                                                                                    | 1.3 | 21        |
| 150 | ?2-Adrenergic Receptors in Neuronal and Glial Cultures: Characterization and Comparison. Journal of Neurochemistry, 1989, 53, 287-296.                                                                  | 2.1 | 20        |
| 151 | Insulin-like Growth Factor I Receptors and IGF-I Actions in Neuronal Cultures from the Brain. Annals of the New York Academy of Sciences, 1993, 692, 89-101.                                            | 1.8 | 20        |
| 152 | Diminazene enhances stability of atherosclerotic plaques in ApoE-deficient mice. Vascular<br>Pharmacology, 2015, 74, 103-113.                                                                           | 1.0 | 20        |
| 153 | Diminazene Protects Corpus Cavernosum Against Hypercholesterolemia-Induced Injury. Journal of<br>Sexual Medicine, 2015, 12, 289-302.                                                                    | 0.3 | 20        |
| 154 | Transcriptomic signature of gut microbiome-contacting cells in colon of spontaneously hypertensive rats. Physiological Genomics, 2020, 52, 121-132.                                                     | 1.0 | 20        |
| 155 | Gene Therapy for Cardiovascular Disorders. Is There a Future?. Annals of the New York Academy of<br>Sciences, 2001, 953a, 31-42.                                                                        | 1.8 | 19        |
| 156 | Area-Specific Differences in Transmitter Release in Central Catecholaminergic Neurons of Spontaneously Hypertensive Rats. Hypertension, 2008, 52, 351-358.                                              | 1.3 | 19        |
| 157 | Functional heart recovery in an adult mammal, the spiny mouse. International Journal of Cardiology, 2021, 338, 196-203.                                                                                 | 0.8 | 19        |
| 158 | Identification of a Gut Commensal That Compromises the Blood Pressure-Lowering Effect of Ester Angiotensin-Converting Enzyme Inhibitors. Hypertension, 2022, 79, 1591-1601.                             | 1.3 | 19        |
| 159 | Development of brain insulin receptors. International Journal of Biochemistry & Cell Biology, 1988, 20, 225-230.                                                                                        | 0.8 | 18        |
| 160 | Increased expression of calreticulin is linked to ANG IV-mediated activation of lung endothelial NOS.<br>American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L794-L801. | 1.3 | 18        |
| 161 | Reversal of hypertension by angiotensin II type 1 receptor antisense gene therapy in the adult SHR.<br>American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H1260-H1264.       | 1.5 | 18        |
| 162 | Functional genomics as an emerging strategy for the investigation of central mechanisms in experimental hypertension. Progress in Biophysics and Molecular Biology, 2004, 84, 107-123.                  | 1.4 | 17        |

| #   | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | α <sub>1</sub> â€Adrenergic Receptors in Neuronal Cultures from Rat Brain: Increased Expression in the<br>Spontaneously Hypertensive Rat. Journal of Neurochemistry, 1986, 47, 1190-1198.                                                                               | 2.1 | 17        |
| 164 | Regulation of Angiotensin II Type 1 Receptor mRNA in Neuronal Cultures of Normotensive and<br>Spontaneously Hypertensive Rat Brains by Phorbol Esters and Forskolin. Journal of Neurochemistry,<br>1994, 62, 2079-2084.                                                 | 2.1 | 17        |
| 165 | Angiotensin-converting enzyme 2 and COVID-19 in cardiorenal diseases. Clinical Science, 2021, 135, 1-17.                                                                                                                                                                | 1.8 | 17        |
| 166 | Therapeutic Potential of Systemic Gene Transfer Strategy for Hypertension and Cardiovascular Disease. , 2007, , 429-445.                                                                                                                                                |     | 17        |
| 167 | Protein Kinase C Agonists Increase the Expression of Angiotensin II Receptors in Neuronal Cultures.<br>Journal of Neurochemistry, 1987, 48, 1954-1961.                                                                                                                  | 2.1 | 16        |
| 168 | Metabolism of Angiotensin Peptides by Neuronal and Glial Cultures from Rat Brain. Journal of<br>Neurochemistry, 1989, 52, 863-868.                                                                                                                                      | 2.1 | 16        |
| 169 | Chemokine signaling axis between endothelial and myeloid cells regulates development of pulmonary<br>hypertension associated with pulmonary fibrosis and hypoxia. American Journal of Physiology - Lung<br>Cellular and Molecular Physiology, 2019, 317, L434-L444.     | 1.3 | 16        |
| 170 | Response by Gheblawi et al to Letter Regarding Article, "Angiotensin-Converting Enzyme 2: SARS-CoV-2<br>Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the<br>Discovery of ACE2― Circulation Research, 2020, 127, e46-e47. | 2.0 | 16        |
| 171 | Depressive hypertension: A proposed human endotype of brain/gut microbiome dysbiosis. American<br>Heart Journal, 2021, 239, 27-37.                                                                                                                                      | 1.2 | 15        |
| 172 | Growth factor-induced neurite growth in primary neuronal cultures of dogs with neuronal ceroid lipofuscinosis. International Journal of Developmental Neuroscience, 1994, 12, 185-196.                                                                                  | 0.7 | 14        |
| 173 | Characterization of Signal Transduction Pathway in Neurotropic Action of Angiotensin II in Brain<br>Neurons. Endocrinology, 2001, 142, 3502-3511.                                                                                                                       | 1.4 | 14        |
| 174 | Lack of Macrophage Migration Inhibitory Factor Regulation Is Linked to the Increased Chronotropic Action of Angiotensin II in SHR Neurons. Hypertension, 2007, 49, 528-534.                                                                                             | 1.3 | 14        |
| 175 | Spectral imaging reveals microvessel physiology and function from anastomoses to thromboses.<br>Journal of Biomedical Optics, 2010, 15, 011111.                                                                                                                         | 1.4 | 14        |
| 176 | Neuroinflammation in Pulmonary Hypertension: Concept, Facts, and Relevance. Current Hypertension Reports, 2014, 16, 469.                                                                                                                                                | 1.5 | 13        |
| 177 | Decrease in Hypothalamic Gamma Adducin in Rat Models of Hypertension. Hypertension, 2004, 43, 324-328.                                                                                                                                                                  | 1.3 | 12        |
| 178 | Genomic and proteomic approaches for targeting of angiotensin-converting enzyme2 for cardiovascular diseases. Current Opinion in Cardiology, 2008, 23, 364-369.                                                                                                         | 0.8 | 12        |
| 179 | Insulin Stimulates Phosphatidylinositol 3-Kinase Activity in Rat Neuronal Primary Cultures. Journal of Neurochemistry, 1993, 61, 360-363.                                                                                                                               | 2.1 | 11        |
| 180 | [32] Large-scale production of retroviral vectors for systemic gene delivery. Methods in Enzymology, 2002, 346, 562-573.                                                                                                                                                | 0.4 | 11        |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | SARS-CoV-2 Receptor ACE2 (Angiotensin-Converting Enzyme 2) Is Upregulated in Colonic Organoids<br>From Hypertensive Rats. Hypertension, 2020, 76, e26-e28.                                                      | 1.3 | 11        |
| 182 | Aminopeptidase A. Hypertension, 2008, 51, 1273-1274.                                                                                                                                                            | 1.3 | 10        |
| 183 | Phosphate-Activated Glutaminase-Containing Neurons in the Rat Paraventricular Nucleus Express<br>Angiotensin Type 1 Receptors. Hypertension, 2009, 54, 845-851.                                                 | 1.3 | 10        |
| 184 | Involvement of Microglial Cells in Hypoxia-induced Pulmonary Hypertension. American Journal of<br>Respiratory Cell and Molecular Biology, 2018, 59, 271-273.                                                    | 1.4 | 9         |
| 185 | AT1-Receptors and Cellular Actions of Angiotensin II in Neuronal Cultures of Stroke<br>Prone-Spontaneously Hypertensive Rat Brain. Advances in Experimental Medicine and Biology, 1996, 396,<br>71-78.          | 0.8 | 9         |
| 186 | Gut–brain–bone marrow axis in hypertension. Current Opinion in Nephrology and Hypertension, 2021,<br>30, 159-165.                                                                                               | 1.0 | 9         |
| 187 | Attenuation of ANG II actions by adenovirus delivery of AT1 receptor antisense in neurons and SMC.<br>American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H719-H727.                  | 1.5 | 8         |
| 188 | Mycophenolate Improves Brain–Gut Axis Inducing Remodeling of Gut Microbiota in DOCA-Salt<br>Hypertensive Rats. Antioxidants, 2020, 9, 1199.                                                                     | 2.2 | 8         |
| 189 | Would Repurposing Minocycline Alleviate Neurologic Manifestations of COVID-19?. Frontiers in Neuroscience, 2020, 14, 577780.                                                                                    | 1.4 | 8         |
| 190 | Novel Role of Macrophage Migration Inhibitory Factor in Angiotensin II Regulation of<br>Neuromodulation in Rat Brain. , 0, .                                                                                    |     | 8         |
| 191 | Lack of alpha-1-adrenergic receptor-mediated downregulation of angiotensin II receptors in neuronal cultures from spontaneously hypertensive rat brain. Molecular and Cellular Biochemistry, 1989, 91, 111-115. | 1.4 | 7         |
| 192 | Genetic targeting of the renin-angiotensin system for long-term control of hypertension. Current<br>Hypertension Reports, 2002, 4, 25-31.                                                                       | 1.5 | 7         |
| 193 | ACE2 as therapeutic agent. Clinical Science, 2020, 134, 2581-2595.                                                                                                                                              | 1.8 | 7         |
| 194 | AT1 Receptor-Mediated Nuclear Translocation of Raf-1 in Brain Neurons. Journal of Neurochemistry, 2002, 70, 424-427.                                                                                            | 2.1 | 6         |
| 195 | Insulin Downregulates Alpha-2 Adrenergic Receptors in Cultured Glial Cells. , 1987, , 209-214.                                                                                                                  |     | 6         |
| 196 | Developmental Regulation of the Insulin and Insulin-Like Growth Factor Receptors in the Central<br>Nervous System. , 1993, , 109-127.                                                                           |     | 6         |
| 197 | Angiotensin-Converting Enzyme 2/Angiotensin-(1-7)/Mas Receptor Axis. , 2015, , 269-274.                                                                                                                         |     | 5         |
| 198 | Potential of Minocycline for Treatment of Resistant Hypertension. American Journal of Cardiology, 2021, 156, 147-149.                                                                                           | 0.7 | 5         |

| #   | Article                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Physiologically Unique Insulin Receptors on Neuronal Cells. , 1987, , 191-200.                                                                                                       |     | 5         |
| 200 | Binding of [1251]-Insulin-Like Growth Factor-1 (IGF-1) in Brains of Alzheimer's and Alcoholic Patients.<br>Advances in Experimental Medicine and Biology, 1991, 293, 483-492.        | 0.8 | 5         |
| 201 | Cardiovascular protection by angiotensin-converting enzyme 2: a new paradigm. Future Cardiology, 2008, 4, 175-182.                                                                   | 0.5 | 4         |
| 202 | ACE2/Angiotensin-(1-7)/Mas Axis and Cardiovascular Regeneration. Current Hypertension Reviews, 2012,<br>8, 35-46.                                                                    | 0.5 | 4         |
| 203 | Distinct Gene Expression Profiles in Colonic Organoids from Normotensive and the Spontaneously<br>Hypertensive Rats. Cells, 2021, 10, 1523.                                          | 1.8 | 4         |
| 204 | Glucose Transporters in Central Nervous System Glucose Homeostasis. Advances in Experimental<br>Medicine and Biology, 1991, 293, 397-404.                                            | 0.8 | 4         |
| 205 | Insulin-Like Growth Factor I: A Possible Modulator of Intercellular Communication in the Brain.<br>Advances in Experimental Medicine and Biology, 1991, 293, 493-505.                | 0.8 | 4         |
| 206 | Increased turnover of surface insulin receptors in fibroblastic cultures from genetically diabetic<br>(DB/DB) mice. Journal of Cellular Biochemistry, 1985, 28, 59-67.               | 1.2 | 3         |
| 207 | Pancreatic ACE2 shedding is associated with impaired glycemia in high fat dietâ€fed mice FASEB Journal, 2013, 27, 1154.1.                                                            | 0.2 | 3         |
| 208 | Evidence for Central Nervous System Insulin Synthesis. , 1987, , 121-130.                                                                                                            |     | 2         |
| 209 | Chronic inhibition of phosphoinositideâ€3â€kinase (PI3K) in the nucleus of the solitary tract (NTS) of<br>hypertensive rats increases blood pressure. FASEB Journal, 2007, 21, A899. | 0.2 | 2         |
| 210 | MICROGLIAL ACTIVATION BY THE BRAIN RENINâ€ANGIOTENSIN SYSTEM. FASEB Journal, 2011, 25, 661.2.                                                                                        | 0.2 | 2         |
| 211 | ACE2 gene therapy decreases fibrosis in the pancreas of high fat dietâ€fed mice. FASEB Journal, 2013, 27, 1154.7.                                                                    | 0.2 | 2         |
| 212 | Abstract 14166: Cardiac Function is Protected From Ischemic Injury in African Spiny Mice. Circulation, 2015, 132, .                                                                  | 1.6 | 2         |
| 213 | Gene Therapy in Cardiovascular Disease. Molecular Diagnosis and Therapy, 2001, 1, 55-66.                                                                                             | 3.3 | 1         |
| 214 | Characterization of a functional (pro)renin receptor (PRR) in brain neuron. FASEB Journal, 2008, 22, 735.16.                                                                         | 0.2 | 1         |
| 215 | Cardiovascular Genomics Themed Issue. Experimental Physiology, 2005, 90, 271-272.                                                                                                    | 0.9 | 0         |
| 216 | New Targets in Pulmonary Hypertension—Another ACE Up the Sleeve. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 482-482.                                     | 2.5 | 0         |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Complementary Embryonic and Adult Cell Populations Enhance Myocardial Repair in Rat Myocardial<br>Injury Model. Stem Cells International, 2019, 2019, 1-11.                                                                                 | 1.2 | 0         |
| 218 | Angiotensinâ€(1–7) prevents cardiac remodeling during angiotensin IIâ€induced hypertension. FASEB<br>Journal, 2007, 21, A896.                                                                                                               | 0.2 | 0         |
| 219 | (Pro)renin receptor (PRR) expression in the spontaneously hypertensive rats (SHR) brain. FASEB<br>Journal, 2007, 21, A1364.                                                                                                                 | 0.2 | 0         |
| 220 | Structureâ€Based Discovery of Angiotensinâ€Converting Enzyme 2 (ACE2) Activators. FASEB Journal, 2007, 21, A1365.                                                                                                                           | 0.2 | 0         |
| 221 | Anterograde Tracing of A1 and A5 Efferents Using Phenotypically Restricted Lentivirus Vector<br>Mediated Reporter Gene Expression. FASEB Journal, 2007, 21, A474.                                                                           | 0.2 | 0         |
| 222 | Role of phosphoinositideâ€3â€kinase (PI3K) in the nucleus of the solitary tract (NTS) in the modulation of baroreceptor reflex function in the hypertensive rat. FASEB Journal, 2008, 22, 737.34.                                           | 0.2 | 0         |
| 223 | Expression of functional Angiotensin II (Ang II) receptors types, AT 1 R and AT 2 R, in RVLM neuronal cultures from adult rat brain. FASEB Journal, 2008, 22, 1210.12.                                                                      | 0.2 | 0         |
| 224 | Paraventricular nucleus (PVN) neurons projecting to the rostral ventrolateral medulla (RVLM) contain both oxytocin and glutamate. FASEB Journal, 2009, 23, 967.6.                                                                           | 0.2 | 0         |
| 225 | Increased expression of Ndufa10, a subunit of mitochondrial complex 1 in the paraventricular nucleus of the SHR. FASEB Journal, 2009, 23, 1015.11.                                                                                          | 0.2 | 0         |
| 226 | Lentiâ€viral mediated overexpression of ACE2 or Angiotensinâ€(1â€7) prevents bleomycinâ€induced pulmonary<br>fibrosis. FASEB Journal, 2009, 23, 770.7.                                                                                      | 0.2 | 0         |
| 227 | Hyperosmotic evoked sympathoexcitation is blocked by overexpression of macrophage inhibitory<br>migration factor (MIF) in the paraventricular nucleus of hypothalamus (PVN). FASEB Journal, 2009, 23,<br>792.11.                            | 0.2 | 0         |
| 228 | Central hypertonic NaCl increases cytokine expression in the hypothalamic paraventricular nucleus.<br>FASEB Journal, 2010, 24, 809.8.                                                                                                       | 0.2 | 0         |
| 229 | Peripheral activation of ACE2â€Angâ€(1–7)â€Mas axis reduces the cardiovascular reactivity to acute stress<br>in rats. FASEB Journal, 2010, 24, 625.6.                                                                                       | 0.2 | 0         |
| 230 | Evidence for a depressor action of AT1 receptors in the nucleus of the solitary tract (NTS). FASEB<br>Journal, 2010, 24, 809.11.                                                                                                            | 0.2 | 0         |
| 231 | The RNA Binding Complex Translinâ€Trax Mediates Proâ€Excitatory Activity in Neurons. FASEB Journal,<br>2010, 24, 794.5.                                                                                                                     | 0.2 | 0         |
| 232 | Activation of the Protective Arm of Renin Angiotensin System (RAS) Corrects the Reparative Dysfunction of Diabetic CD34+ Cells Blood, 2010, 116, 2637-2637.                                                                                 | 0.6 | 0         |
| 233 | Brain targeted (Pro)renin receptor overâ€expression induces the development of hypertension via<br>modulation of baroreflex sensitivity and renal sympathetic nerve activity in renin transgenic mice.<br>FASEB Journal, 2011, 25, 1078.10. | 0.2 | 0         |
| 234 | Dysfunctional bone marrowâ€derived endothelial progenitor cells in chronic Ang II infusion rat model of hypertension. FASEB Journal, 2012, 26, 878.7.                                                                                       | 0.2 | 0         |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | In vivo MEMRI reveals persistent activation of the brain autonomic areas by an acute systemic angiotensin II injection. FASEB Journal, 2012, 26, lb801.                                                | 0.2 | 0         |
| 236 | NTS (pro)renin receptor (PRR)â€mediated antihypertensive effect involves NFâ€KappaBâ€cytokine signaling in<br>the spontaneously hypertensive rats (SHR). FASEB Journal, 2012, 26, 684.26.              | 0.2 | 0         |
| 237 | Microglialâ€neuronal interactions in the paraventricular nucleus (PVN): a potential mechanism<br>underlying neurogenic hypertension. FASEB Journal, 2012, 26, 891.3.                                   | 0.2 | 0         |
| 238 | Lentiâ€Angiotensinâ€(1–7) transduction of Islet+ cardiac progenitor cells improves the reparative capacity<br>in Doxorubicin induced Cardiomyopathy. FASEB Journal, 2013, 27, 1184.7.                  | 0.2 | 0         |
| 239 | P2X7 Receptors Mediate Hormone Release in nerve terminals of the Neurohypophysis (NH). FASEB<br>Journal, 2013, 27, 935.8.                                                                              | 0.2 | 0         |
| 240 | Genetically Engineered Mesenchymal Stem Cells that Overexpress ACE2 or Angiotensinâ€(1–7) Show<br>Enhanced Nitricâ€Oxide Production. FASEB Journal, 2013, 27, lb689.                                   | 0.2 | 0         |
| 241 | Expression of (pro)renin receptor and angiotensin II type 1 receptor on bone marrowâ€related neurons<br>in the central nervous system. FASEB Journal, 2013, 27, 1187.15.                               | 0.2 | 0         |
| 242 | Abstract 557: ACE2/Angiotensin-(1-7) Stimulates Vasoprotection-Relevant Functions of Human CD34<br><sup>+</sup> Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .                 | 1.1 | 0         |
| 243 | Stress Dampening and Anxiolytic Effects of Overexpressing Angiotensin Converting Enzyme 2 in Female<br>Mice. FASEB Journal, 2018, 32, 737.7.                                                           | 0.2 | 0         |
| 244 | Shortâ€ŧerm captopril treatment causes persistently decreased blood pressure associated with<br>long″asting shifts in gut microbiota and improvement in gut pathology. FASEB Journal, 2018, 32, 582.7. | 0.2 | 0         |
| 245 | Protection against hypoxiaâ€induced pulmonary hypertension in CX3CR1â€deficient mice correlates with decreased microglia activation. FASEB Journal, 2018, 32, .                                        | 0.2 | 0         |
| 246 | Translocation of bone marrowâ€derived cells contribute to PVN neuroinflammation in hypoxiaâ€induced<br>PH. FASEB Journal, 2019, 33, 550.13.                                                            | 0.2 | 0         |
| 247 | Disease Associated Microglia Is Identified As A Major Contributor To Neuroinflammation Associated<br>To Chronic Hypoxia Inducedâ€Pulmonary Hypertension. FASEB Journal, 2022, 36, .                    | 0.2 | 0         |