Bernhard Schink

List of Publications by Citations

Source: https://exaly.com/author-pdf/11643769/bernhard-schink-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

283 papers

13,598 citations

66 h-index

104 g-index

286 ext. papers

15,406 ext. citations

4.4 avg, IF

6.51 L-index

#	Paper	IF	Citations
283	Ferrous iron oxidation by anoxygenic phototrophic bacteria. <i>Nature</i> , 1993 , 362, 834-836	50.4	559
282	Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiology Ecology, 2001, 34, 181-1	84 6.3	324
281	Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. <i>Annals of the New York Academy of Sciences</i> , 2008 , 1125, 58-72	6.5	265
280	Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. <i>FEMS Microbiology Ecology</i> , 2004 , 47, 85-92	4.3	242
279	Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria. <i>Archives of Microbiology</i> , 1998 , 169, 159-65	3	208
278	Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. <i>Applied Microbiology and Biotechnology</i> , 1990 , 33, 121	5.7	205
277	Synergistic interactions in the microbial world. <i>Antonie Van Leeuwenhoek</i> , 2002 , 81, 257-61	2.1	204
276	Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. <i>Applied and Environmental Microbiology</i> , 2000 , 66, 2743-7	4.8	194
275	The membrane-bound hydrogenase of Alcaligenes eutrophus. I. Solubilization, purification, and biochemical properties. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 1979 , 567, 315-24	3.8	193
274	Growth yields in bacterial denitrification and nitrate ammonification. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 1420-4	4.8	191
273	Diversity of Ferrous Iron-Oxidizing, Nitrate-Reducing Bacteria and their Involvement in Oxygen-Independent Iron Cycling. <i>Geomicrobiology Journal</i> , 2004 , 21, 371-378	2.5	191
272	Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. <i>FEMS Microbiology Reviews</i> , 2015 , 39, 688-728	15.1	190
271	Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium. <i>Archives of Microbiology</i> , 1982 , 133, 195-201	3	190
270	Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms. <i>Environmental Microbiology Reports</i> , 2010 , 2, 489-99	3.7	183
269	Fermentation of acetylene by an obligate anaerobe,Pelobacter acetylenicus sp. nov <i>Archives of Microbiology</i> , 1985 , 142, 295-301	3	176
268	Humic acid reduction by propionibacterium freudenreichii and other fermenting bacteria. <i>Applied and Environmental Microbiology</i> , 1998 , 64, 4507-12	4.8	176
267	Growth of geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. <i>Applied and Environmental Microbiology</i> , 1998 , 64, 2232-6	4.8	166

(2007-2016)

266	Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment. Journal of Molecular Microbiology and Biotechnology, 2016 , 26, 5-28	0.9	165
265	Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 4429-36	4.8	162
264	Life by a new decarboxylation-dependent energy conservation mechanism with Na+ as coupling ion. <i>EMBO Journal</i> , 1984 , 3, 1665-1670	13	161
263	Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 18273-	8 ^{11.5}	154
262	A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria. <i>Journal of Bacteriology</i> , 1998 , 180, 3686-91	3.5	154
261	Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. <i>Environmental Microbiology</i> , 2009 , 11, 209-19	5.2	147
260	Stable hydrogen and carbon isotope fractionation during microbial toluene degradation: mechanistic and environmental aspects. <i>Applied and Environmental Microbiology</i> , 2001 , 67, 4842-9	4.8	141
259	Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp. nov. and Pelobacter propionicus sp. nov., and evidence for propionate formation from C2 compounds. <i>Archives of Microbiology</i> , 1984 , 137, 33-41	3	139
258	Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a sporeforming, obligately syntrophic bacterium. <i>Archives of Microbiology</i> , 1985 , 140, 387-390	3	137
257	Energetics and kinetics of lactate fermentation to acetate and propionate via methylmalonyl-CoA or acrylyl-CoA. <i>FEMS Microbiology Letters</i> , 2002 , 211, 65-70	2.9	135
256	13C/12C isotope fractionation of aromatic hydrocarbons during microbial degradation. <i>Environmental Microbiology</i> , 1999 , 1, 409-14	5.2	127
255	Anaerobic aniline degradation via reductive deamination of 4-aminobenzoyl-CoA in Desulfobacterium anilini. <i>Archives of Microbiology</i> , 1991 , 155, 183-190	3	127
254	Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. <i>Archives of Microbiology</i> , 1984 , 140, 147-152	3	123
253	Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. <i>Archives of Microbiology</i> , 1995 , 164, 346-352	3	122
252	Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitrate-reducing bacteria. <i>FEMS Microbiology Ecology</i> , 2009 , 70, 335-43	4.3	119
251	Syntrophism among Prokaryotes 2006 , 309-335		119
250	Microbial methanol formation: A major end product of pectin metabolism. <i>Current Microbiology</i> , 1980 , 4, 387-389	2.4	116
249	Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 3073-7	11.5	115

248	Degradation of o-xylene and m-xylene by a novel sulfate-reducer belonging to the genus Desulfotomaculum. <i>Archives of Microbiology</i> , 2004 , 181, 407-17	3	115
247	Propionigenium modestum gen. nov. sp. nov. a new strictly anaerobic, nonsporing bacterium growing on succinate. <i>Archives of Microbiology</i> , 1982 , 133, 209-216	3	111
246	Carbon and hydrogen stable isotope fractionation during aerobic bacterial degradation of aromatic hydrocarbons. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 5191-4	4.8	109
245	Bacteria associated with benthic diatoms from Lake Constance: phylogeny and influences on diatom growth and secretion of extracellular polymeric substances. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 7740-9	4.8	107
244	Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture. <i>Archives of Microbiology</i> , 2000 , 174, 314-21	3	99
243	Phosphite oxidation by sulphate reduction. <i>Nature</i> , 2000 , 406, 37	50.4	96
242	Ferrihydrite-dependent growth of Sulfurospirillum deleyianum through electron transfer via sulfur cycling. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 5744-9	4.8	95
241	Operation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum. <i>Journal of Bacteriology</i> , 2005 , 187, 3471-6	3.5	88
240	Cysteine-mediated reductive dissolution of poorly crystalline iron(III) oxides by Geobacter sulfurreducens. <i>Environmental Science & Environmental Sci</i>	10.3	86
239	The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp <i>FEMS Microbiology Ecology</i> , 2006 , 24, 137-149	4.3	85
238	Phototrophic oxidation of ferrous iron by a Rhodomicrobium vannielii strain. <i>Microbiology (United Kingdom)</i> , 1998 , 144 (Pt 8), 2263-2269	2.9	85
237	Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes. <i>Archives of Microbiology</i> , 2002 , 178, 53-8	3	78
236	Desulfotignum phosphitoxidans sp. nov., a new marine sulfate reducer that oxidizes phosphite to phosphate. <i>Archives of Microbiology</i> , 2002 , 177, 381-91	3	77
235	Enhanced Propionate Formation by Propionibacterium freudenreichii subsp. freudenreichii in a Three-Electrode Amperometric Culture System. <i>Applied and Environmental Microbiology</i> , 1990 , 56, 2771	- 4 .8	77
234	Ferrous iron oxidation by denitrifying bacteria in profundal sediments of a deep lake (Lake Constance). <i>FEMS Microbiology Ecology</i> , 2001 , 37, 127-134	4.3	76
233	Syntrophism Among Prokaryotes 2013 , 471-493		75
232	pmoA-based analysis of methanotrophs in a littoral lake sediment reveals a diverse and stable community in a dynamic environment. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 3138-42	4.8	75
231	Phloroglucinol pathway in the strictly anaerobic Pelobacter acidigallici: fermentation of trihydroxybenzenes to acetate via triacetic acid. <i>Archives of Microbiology</i> , 1992 , 157, 417-424	3	75

230	Clostridium magnum sp. nov., a non-autotrophic homoacetogenic bacterium. <i>Archives of Microbiology</i> , 1984 , 137, 250-255	3	74
229	Evidence of reversed electron transport in syntrophic butyrate or benzoate oxidation by Syntrophomonas wolfei and Syntrophus buswellii. <i>Archives of Microbiology</i> , 1994 , 162, 136-142	3	72
228	Methylosoma difficile gen. nov., sp. nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of Lake Constance. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2007 , 57, 1073-1080	2.2	71
227	Pure culture and cytological properties of Byntriphobacter wolini\(\mathbb{I}\)FEMS Microbiology Letters, 1994 , 123, 249-254	2.9	71
226	Degradation of unsaturated hydrocarbons by methanogenic enrichment cultures. <i>FEMS Microbiology Letters</i> , 1985 , 31, 69-77	2.9	71
225	Initiation of anaerobic degradation of p-cresol by formation of 4-hydroxybenzylsuccinate in desulfobacterium cetonicum. <i>Journal of Bacteriology</i> , 2001 , 183, 752-7	3.5	70
224	Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate or succinate. <i>Archives of Microbiology</i> , 1989 , 151, 421-426	3	70
223	The bacterial microbiota in the ceca of Capercaillie (Tetrao urogallus) differs between wild and captive birds. <i>Systematic and Applied Microbiology</i> , 2011 , 34, 542-51	4.2	69
222	Nitrite, an electron donor for anoxygenic photosynthesis. <i>Science</i> , 2007 , 316, 1870	33.3	69
221	Anaerobic degradation of acetone by Desulfococcus biacutus spec. nov. <i>Archives of Microbiology</i> , 1990 , 154, 355-61	3	68
220	Anaerobic degradation of m-cresol by Desulfobacterium cetonicum is initiated by formation of 3-hydroxybenzylsuccinate. <i>Archives of Microbiology</i> , 1999 , 172, 287-94	3	67
219	Fermentative degradation of resorcinol and resorcylic acids. <i>Archives of Microbiology</i> , 1985 , 143, 52-59	3	67
218	Anaerobic degradation of nonionic and anionic surfactants in enrichment cultures and fixed-bed reactors. <i>Water Research</i> , 1987 , 21, 615-622	12.5	66
217	A new 3-hydroxybutyrate fermenting anaerobe, Ilyobacter polytropus, gen. nov. sp. nov., possessing various fermentation pathways. <i>Archives of Microbiology</i> , 1984 , 140, 139-146	3	65
216	Malonomonas rubra gen. nov. sp. nov., a microaerotolerant anaerobic bacterium growing by decarboxylation of malonate. <i>Archives of Microbiology</i> , 1989 , 151, 427-433	3	64
215	Respiration of 2,4,6-trinitrotoluene by Pseudomonas sp. strain JLR11. <i>Journal of Bacteriology</i> , 2000 , 182, 1352-5	3.5	62
214	Microbiology of wetwood: importance of pectin degradation and clostridium species in living trees. <i>Applied and Environmental Microbiology</i> , 1981 , 42, 526-32	4.8	62
213	Degradation of hydroquinone, gentisate, and benzoate by a fermenting bacterium in pure or defined mixed culture. <i>Archives of Microbiology</i> , 1989 , 151, 541-545	3	61

212	Fermentative degradation of monohydroxybenzoates by defined syntrophic cocultures. <i>Archives of Microbiology</i> , 1986 , 145, 396-402	3	61
211	Mechanistic aspects of molybdenum-containing enzymes. FEMS Microbiology Reviews, 1998, 22, 489-50	115.1	60
210	Demethylation and degradation of phenylmethylethers by the sulfide-methylating homoacetogenic bacterium strain TMBS 4. <i>Archives of Microbiology</i> , 1993 , 159, 308-315	3	60
209	Anaerobic oxidation of glycerol by Escherichia coli in an amperometric poised-potential culture system. <i>Applied Microbiology and Biotechnology</i> , 1989 , 32, 170-175	5.7	60
208	A proteomic view at the biochemistry of syntrophic butyrate oxidation in Syntrophomonas wolfei. <i>PLoS ONE</i> , 2013 , 8, e56905	3.7	59
207	Stable isotope fractionation caused by glycyl radical enzymes during bacterial degradation of aromatic compounds. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 2935-40	4.8	59
206	Fermentation of primary alcohols and diols and pure culture of syntrophically alcohol-oxidizing anaerobes. <i>Archives of Microbiology</i> , 1985 , 143, 60-66	3	57
205	Cell aggregation of Pseudomonas aeruginosa strain PAO1 as an energy-dependent stress response during growth with sodium dodecyl sulfate. <i>Archives of Microbiology</i> , 2006 , 185, 417-27	3	56
204	Serious mismatches continue between science and policy in forest bioenergy. <i>GCB Bioenergy</i> , 2019 , 11, 1256-1263	5.6	55
203	Pyrite formation from FeS and HS is mediated through microbial redox activity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 6897-6902	11.5	55
202	Factors influencing the cultivability of lake water bacteria. <i>Journal of Microbiological Methods</i> , 2001 , 47, 41-50	2.8	55
201	Acetylene hydratase of Pelobacter acetylenicus. Molecular and spectroscopic properties of the tungsten iron-sulfur enzyme. <i>FEBS Journal</i> , 1999 , 264, 176-82		54
200	Energetics of syntrophic fatty acid oxidation. FEMS Microbiology Reviews, 1994, 15, 85-94	15.1	54
199	Reciprocal isomerization of butyrate and isobutyrate by the strictly anaerobic bacterium strain WoG13 and methanogenic isobutyrate degradation by a defined triculture. <i>Applied and Environmental Microbiology</i> , 1992 , 58, 1435-9	4.8	54
198	Proposal to include the rank of phylum in the International Code of Nomenclature of Prokaryotes. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2015 , 65, 4284-4287	2.2	53
197	Cultivation of methanotrophic bacteria in opposing gradients of methane and oxygen. <i>FEMS Microbiology Ecology</i> , 2006 , 56, 331-44	4.3	52
196	Preferential cultivation of type II methanotrophic bacteria from littoral sediments (Lake Constance). <i>FEMS Microbiology Ecology</i> , 2004 , 47, 179-89	4.3	50
195	Anaerobic degradation of isovalerate by a defined methanogenic coculture. <i>Archives of Microbiology</i> , 1986 , 144, 291-295	3	50

(1997-2018)

194	Proposal of the suffix -ota to denote phyla. Addendum to 'Proposal to include the rank of phylum in the International Code of Nomenclature of Prokaryotes'. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2018 , 68, 967-969	2.2	50	
193	Membrane-bound proton-translocating pyrophosphatase of Syntrophus gentianae, a syntrophically benzoate-degrading fermenting bacterium. <i>FEBS Journal</i> , 1998 , 256, 589-94		48	
192	Evaluation of electron-shuttling compounds in microbial ferric iron reduction. <i>FEMS Microbiology Letters</i> , 2003 , 220, 229-33	2.9	46	
191	Oxidation of glycerol, lactate, and propionate by Propionibacterium freudenreichii in a poised-potential amperometric culture system. <i>Archives of Microbiology</i> , 1990 , 153, 506-512	3	46	
190	Enzymes Involved in Anaerobic Polyethylene Glycol Degradation by Pelobacter venetianus and Bacteroides Strain PG1. <i>Applied and Environmental Microbiology</i> , 1992 , 58, 2164-7	4.8	46	
189	Crystal structure of pyrogallol-phloroglucinol transhydroxylase, an Mo enzyme capable of intermolecular hydroxyl transfer between phenols. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 11571-6	11.5	45	
188	Anaerobic degradation of isobutyrate by methanogenic enrichment cultures and by a Desulfococcus multivorans strain. <i>Archives of Microbiology</i> , 1989 , 151, 126-132	3	45	
187	Genome-guided analysis of physiological and morphological traits of the fermentative acetate oxidizer Thermacetogenium phaeum. <i>BMC Genomics</i> , 2012 , 13, 723	4.5	44	
186	Energetics and biochemistry of fermentative benzoate degradation by Syntrophus gentianae. <i>Archives of Microbiology</i> , 1999 , 171, 331-337	3	44	
185	Methanogenic degradation of hydroquinone and catechol via reductive dehydroxylation to phenol. <i>FEMS Microbiology Letters</i> , 1985 , 31, 79-87	2.9	44	
184	Hydrogen metabolism in aerobic hydrogen-oxidizing bacteria. <i>Biochimie</i> , 1978 , 60, 297-305	4.6	44	
183	Different strategies in anaerobic biodegradation of aromatic compounds: nitrate reducers versus strict anaerobes. <i>Environmental Microbiology Reports</i> , 2012 , 4, 469-78	3.7	43	
182	Evidence of two oxidative reaction steps initiating anaerobic degradation of resorcinol (1,3-dihydroxybenzene) by the denitrifying bacterium Azoarcus anaerobius. <i>Journal of Bacteriology</i> , 1998 , 180, 3644-9	3.5	42	
181	Exploring the active site of the tungsten, iron-sulfur enzyme acetylene hydratase. <i>Journal of Bacteriology</i> , 2011 , 193, 1229-36	3.5	40	
180	Activity and diversity of methanotrophic bacteria at methane seeps in eastern Lake Constance sediments. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 2573-81	4.8	40	
179	Pure Culture of Syntrophus buswellii, Definition of its Phylogenetic Status, and Description of Syntrophus gentianae sp. nov <i>Systematic and Applied Microbiology</i> , 1995 , 18, 62-66	4.2	40	
178	Hydrogen or formate: Alternative key players in methanogenic degradation. <i>Environmental Microbiology Reports</i> , 2017 , 9, 189-202	3.7	39	
177	Energetics of methanogenic benzoate degradation by in syntrophic coculture. <i>Microbiology (United Kingdom)</i> , 1997 , 143, 2345-2351	2.9	39	

176	Comparison of aerobic methanotrophic communities in littoral and profundal sediments of Lake Constance by a molecular approach. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 4389-94	4.8	39
175	Fermentation of tartrate enantiomers by anaerobic bacteria, and description of two new species of strict anaerobes, Ruminococcus pasteurii and Ilyobacter tartaricus. <i>Archives of Microbiology</i> , 1984 , 139, 409-414	3	39
174	Enrichment and isolation of ferric-iron- and humic-acid-reducing bacteria. <i>Methods in Enzymology</i> , 2005 , 397, 58-77	1.7	38
173	Diversity, Ecology, and Isolation of Acetogenic Bacteria 1994 , 197-235		38
172	A strictly anaerobic nitrate-reducing bacterium growing with resorcinol and other aromatic compounds. <i>Archives of Microbiology</i> , 1992 , 158, 48-53	3	38
171	Fermentation of polyethylene glycol via acetaldehyde in Pelobacter venetianus. <i>Applied Microbiology and Biotechnology</i> , 1986 , 25, 37-42	5.7	38
170	Microbial degradation of phthalates: biochemistry and environmental implications. <i>Environmental Microbiology Reports</i> , 2020 , 12, 3-15	3.7	38
169	Hydroquinone degradation via reductive dehydroxylation of gentisyl-CoA by a strictly anaerobic fermenting bacterium. <i>Archives of Microbiology</i> , 1994 , 161, 25-32	3	36
168	Ether-cleaving enzyme and diol dehydratase involved in anaerobic polyethylene glycol degradation by a new Acetobacterium sp. <i>Biodegradation</i> , 1991 , 2, 71-9	4.1	36
167	Pathway of anaerobic poly-Ehydroxybutyrate degradation byllyobacter delafieldii. <i>Biodegradation</i> , 1993 , 4, 179-185	4.1	36
166	Characterization of pectinolytic enzymes of Clostridium thermosulfurogenes. <i>FEMS Microbiology Letters</i> , 1983 , 17, 295-298	2.9	36
165	Dominant sugar utilizers in sediment of Lake Constance depend on syntrophic cooperation with methanogenic partner organisms. <i>Environmental Microbiology</i> , 2008 , 10, 1501-11	5.2	35
164	Novel bacterial molybdenum and tungsten enzymes: three-dimensional structure, spectroscopy, and reaction mechanism. <i>Biological Chemistry</i> , 2005 , 386, 999-1006	4.5	35
163	Mutants of Alcaligenes eutrophus defective in autotrophic metabolism. <i>Archives of Microbiology</i> , 1978 , 117, 123-9	3	35
162	Enzymes involved in the anaerobic degradation of ortho-phthalate by the nitrate-reducing bacterium Azoarcus sp. strain PA01. <i>Environmental Microbiology</i> , 2016 , 18, 3175-88	5.2	34
161	Involvement of NADH:acceptor oxidoreductase and butyryl coenzyme A dehydrogenase in reversed electron transport during syntrophic butyrate oxidation by Syntrophomonas wolfei. <i>Journal of Bacteriology</i> , 2009 , 191, 6167-77	3.5	34
160	Degradation of hydroxyhydroquinone by the strictly anaerobic fermenting bacterium Pelobacter massiliensis sp. nov <i>Archives of Microbiology</i> , 1991 , 155, 511-516	3	34
159	Malonate decarboxylase of Malonomonas rubra, a novel type of biotin-containing acetyl enzyme. <i>FEBS Journal</i> , 1992 , 207, 117-23		34

(2005-1993)

158	Hydrogen formation from glycolate driven by reversed electron transport in membrane vesicles of a syntrophic glycolate-oxidizing bacterium. <i>FEBS Journal</i> , 1993 , 217, 233-40		34
157	Anaerovibrio glycerini sp. nov., an anaerobic bacterium fermenting glycerol to propionate, cell matter, and hydrogen. <i>Archives of Microbiology</i> , 1989 , 152, 473-478	3	34
156	Inhibition of methanogenesis by ethylene and other unsaturated hydrocarbons. <i>FEMS Microbiology Letters</i> , 1985 , 31, 63-68	2.9	34
155	Radioassay for hydrogenase activity in viable cells and documentation of aerobic hydrogen-consuming bacteria living in extreme environments. <i>Applied and Environmental Microbiology</i> , 1983 , 45, 1491-500	4.8	34
154	Syntrophic associations in methanogenic degradation. <i>Progress in Molecular and Subcellular Biology</i> , 2006 , 41, 1-19	3	33
153	Lithotrophic growth and hydrogen metabolism byClostridium magnum. <i>FEMS Microbiology Letters</i> , 1991 , 83, 347-350	2.9	33
152	O-demethylation by the homoacetogenic anaerobe Holophaga foetida studied by a new photometric methylation assay using electrochemically produced cob(I)alamin. <i>FEBS Journal</i> , 1994 , 226, 945-51		31
151	Two new species of anaerobic oxalate-fermenting bacteria, Oxalobacter vibrioformis sp. nov. and Clostridium oxalicum sp. nov., from sediment samples. <i>Archives of Microbiology</i> , 1989 , 153, 79-84	3	31
150	Anaerobic phototrophic nitrite oxidation by Thiocapsa sp. strain KS1 and Rhodopseudomonas sp. strain LQ17. <i>Microbiology (United Kingdom)</i> , 2010 , 156, 2428-2437	2.9	31
149	Metabolic pathways and energetics of the acetone-oxidizing, sulfate-reducing bacterium, Desulfobacterium cetonicum. <i>Archives of Microbiology</i> , 1995 , 163, 188-94	3	30
148	Anaerobic degradation of xenobiotic isophthalate by the fermenting bacterium Syntrophorhabdus aromaticivorans. <i>ISME Journal</i> , 2019 , 13, 1252-1268	11.9	30
147	The Phylogenetic Status of Pelobacter acidigallici, Pelobacter venetianus, and Pelobacter carbinolicus. <i>Systematic and Applied Microbiology</i> , 1989 , 11, 257-260	4.2	29
146	Fermentative degradation of glycolic acid by defined syntrophic cocultures. <i>Archives of Microbiology</i> , 1991 , 156, 398-404	3	28
145	Clostridium homopropionicum sp. nov., a new strict anaerobe growing with 2-, 3-, or 4-hydroxybutyrate. <i>Archives of Microbiology</i> , 1990 , 154, 342-8	3	28
144	Complete anaerobic oxidation of hydroquinone by Desulfococcus sp. strain Hy5: indications of hydroquinone carboxylation to gentisate. <i>Archives of Microbiology</i> , 1994 , 162, 131-135	3	27
143	Glycerol and mixture of carbon sources conversion to hydrogen by Clostridium beijerinckii DSM791 and effects of various heavy metals on hydrogenase activity. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 7875-7882	6.7	26
142	Life based on phosphite: a genome-guided analysis of Desulfotignum phosphitoxidans. <i>BMC Genomics</i> , 2013 , 14, 753	4.5	26
141	Dynamics of Redox Changes of Iron Caused by Light dark Variations in Littoral Sediment of a Freshwater Lake. <i>Biogeochemistry</i> , 2005 , 74, 323-339	3.8	26

140	Two distinct pathways for anaerobic degradation of aromatic compounds in the denitrifying bacterium Thauera aromatica strain AR-1. <i>Archives of Microbiology</i> , 2000 , 173, 91-6	3	26
139	Microbial degradation of natural and of new synthetic polymers. <i>FEMS Microbiology Letters</i> , 1992 , 9, 311-6	2.9	26
138	Fermentative degradation of acetone by an enrichment culture in membrane-separated culture devices and in cell suspensions. <i>FEMS Microbiology Letters</i> , 1994 , 122, 27-32	2.9	25
137	Anaerobic degradation of 3-aminobenzoate by a newly isolated sulfate reducer and a methanogenic enrichment culture. <i>Archives of Microbiology</i> , 1992 , 158, 328-334	3	25
136	Enzymes involved in anaerobic degradation of acetone by a denitrifying bacterium. <i>Biodegradation</i> , 1990 , 1, 243-51	4.1	24
135	Genomics of a phototrophic nitrite oxidizer: insights into the evolution of photosynthesis and nitrification. <i>ISME Journal</i> , 2016 , 10, 2669-2678	11.9	24
134	Nitrate-dependent degradation of acetone by Alicycliphilus and Paracoccus strains and comparison of acetone carboxylase enzymes. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 6821-5	4.8	23
133	Effects of alternative methyl group acceptors on the growth energetics of the -demethylating anaerobe. <i>Microbiology (United Kingdom)</i> , 1997 , 143, 1105-1114	2.9	23
132	Acetylene degradation by new isolates of aerobic bacteria and comparison of acetylene hydratase enzymes. <i>FEMS Microbiology Letters</i> , 1997 , 148, 175-80	2.9	23
131	Ferrihydrite reduction by Geobacter species is stimulated by secondary bacteria. <i>Archives of Microbiology</i> , 2004 , 182, 175-81	3	23
130	Fermentation of methoxyacetate to glycolate and acetate by newly isolated strains of Acetobacterium sp <i>Archives of Microbiology</i> , 1990 , 153, 200-204	3	23
129	Anaerobic degradation of protocatechuate (3,4-dihydroxybenzoate) by Thauera aromatica strain AR-1. <i>FEMS Microbiology Letters</i> , 2002 , 212, 139-43	2.9	22
128	Fermentation of mandelate to benzoate and acetate by a homoacetogenic bacterium. <i>Archives of Microbiology</i> , 1991 , 156, 302-306	3	22
127	Sequential Transhydroxylations Converting Hydroxyhydroquinone to Phloroglucinol in the Strictly Anaerobic, Fermentative Bacterium Pelobacter massiliensis. <i>Applied and Environmental Microbiology</i> , 1992 , 58, 1861-8	4.8	22
126	Desulfoprunum benzoelyticum gen. nov., sp. nov., a Gram-stain-negative, benzoate-degrading, sulfate-reducing bacterium isolated from a wastewater treatment plant. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2015 , 65, 77-84	2.2	21
125	Isolation and characterization of a desulforubidin-containing sulfate-reducing bacterium growing with glycolate. <i>Archives of Microbiology</i> , 1995 , 164, 271-279	3	21
124	Biogas process parametersenergetics and kinetics of secondary fermentations in methanogenic biomass degradation. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 1019-26	5.7	20
123	Degradation of acetaldehyde and its precursors by Pelobacter carbinolicus and P. acetylenicus. <i>PLoS ONE</i> , 2014 , 9, e115902	3.7	20

122	Dynamics in composition and size-class distribution of humic substances in profundal sediments of Lake Constance. <i>Organic Geochemistry</i> , 2001 , 32, 3-10	3.1	20
121	Transhydroxylase of Pelobacter acidigallici: a molybdoenzyme catalyzing the conversion of pyrogallol to phloroglucinol. <i>BBA - Proteins and Proteomics</i> , 1994 , 1204, 217-24		20
120	Fermentative degradation of triethanolamine by a homoacetogenic bacterium. <i>Archives of Microbiology</i> , 1994 , 162, 103-7	3	20
119	Identification and heterologous expression of genes involved in anaerobic dissimilatory phosphite oxidation by Desulfotignum phosphitoxidans. <i>Journal of Bacteriology</i> , 2010 , 192, 5237-44	3.5	19
118	Redox Changes of Iron Caused by Erosion, Resuspension and Sedimentation in Littoral Sediment of a Freshwater Lake. <i>Biogeochemistry</i> , 2005 , 74, 341-356	3.8	19
117	Initial steps in the fermentation of 3-hydroxybenzoate by Sporotomaculum hydroxybenzoicum. <i>Archives of Microbiology</i> , 2000 , 173, 288-95	3	19
116	Electron transport phosphorylation driven by glyoxylate respiration with hydrogen as electron donor in membrane vesicles of a glyoxylate-fermenting bacterium. <i>Archives of Microbiology</i> , 1995 , 163, 268-75	3	19
115	One molecule of molybdopterin guanine dinucleotide is associated with each subunit of the heterodimeric Mo-Fe-S protein transhydroxylase of Pelobacter acidigallici as determined by SDS/PAGE and mass spectrometry. <i>FEBS Journal</i> , 1996 , 237, 406-13		19
114	Batch and continuous production of propionic acid from whey permeate by Propionibacterium acidi-propionici in a three-electrode amperometric culture system. <i>Applied Microbiology and Biotechnology</i> , 1992 , 37, 549	5.7	19
113	Isolation of a hydrogenase-cytochromebcomplex from cytoplasmic membranes of Xanthobacter autotrophicus GZ 29. <i>FEMS Microbiology Letters</i> , 1982 , 13, 289-293	2.9	19
112	Heterologous expression and identification of the genes involved in anaerobic degradation of 1,3-dihydroxybenzene (resorcinol) in Azoarcus anaerobius. <i>Journal of Bacteriology</i> , 2007 , 189, 3824-33	3.5	18
111	Hydroxyhydroquinone reductase, the initial enzyme involved in the degradation of hydroxyhydroquinone (1,2,4-trihydroxybenzene) by Desulfovibrio inopinatus. <i>Archives of Microbiology</i> , 2000 , 173, 206-12	3	18
110	Methanogenic Degradation of Anthranilate (2-Aminobenzoate). Systematic and Applied Microbiology, 1988 , 11, 9-12	4.2	18
109	Microaerobic and Anaerobic Bacterial Activities Involved in Formation of Wetwood and Discoloured Wood. <i>IAWA Journal</i> , 1984 , 5, 105-109	2.3	18
108	Draft genome sequence of a nitrate-reducing, o-phthalate degrading bacterium, Azoarcus sp. strain PA01(T). <i>Standards in Genomic Sciences</i> , 2015 , 10, 90		17
107	Acetate oxidation through a modified citric acid cycle in Propionibacterium freudenreichii. <i>Archives of Microbiology</i> , 1995 , 163, 182-187	3	17
106	Fermentative degradation of glutarate via decarboxylation by newly isolated strictly anaerobic bacteria. <i>Archives of Microbiology</i> , 1992 , 157, 290-6	3	17
105	Fermentative degradation of putrescine by new strictly anaerobic bacteria. <i>Archives of Microbiology</i> , 1989 , 151, 498-505	3	17

104	Competitive inhibition of the membrane-bound hydrogenase of Alcaligenes eutrophus by molecular oxygen. <i>Biochemical and Biophysical Research Communications</i> , 1980 , 95, 1563-9	3.4	17
103	Enzymes involved in phthalate degradation in sulphate-reducing bacteria. <i>Environmental Microbiology</i> , 2019 , 21, 3601-3612	5.2	16
102	Syntrophy in Methanogenic Degradation. <i>Microbiology Monographs</i> , 2010 , 143-173	0.8	16
101	Elstera litoralis gen. nov., sp. nov., isolated from stone biofilms of Lake Constance, Germany. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2012 , 62, 1750-1754	2.2	16
100	Towards the reaction mechanism of pyrogallol-phloroglucinol transhydroxylase of Pelobacter acidigallici. <i>BBA - Proteins and Proteomics</i> , 1999 , 1430, 245-53		16
99	The Phylogenetic Positions of Pelobacter acetylenicus and Pelobacter propionicus. <i>Systematic and Applied Microbiology</i> , 1993 , 16, 216-218	4.2	16
98	Fermentation of phenoxyethanol to phenol and acetate by a homoacetogenic bacterium. <i>Archives of Microbiology</i> , 1994 , 162, 199-204	3	16
97	Anaerobic degradation of 3-hydroxybenzoate by a newly isolated nitrate-reducing bacterium. <i>FEMS Microbiology Letters</i> , 1991 , 84, 267-272	2.9	16
96	Energy conservation in malolactic fermentation by Lactobacillus plantarum and Lactobacillus sake. <i>Archives of Microbiology</i> , 1992 , 157, 457-63	3	16
95	A complete citric acid cycle in assimilatory metabolism of Pelobacter acidigallici, a strictly anaerobic, fermenting bacterium. <i>Archives of Microbiology</i> , 1990 , 154, 394-399	3	16
94	Degradation of Glucose, Glycerol and Acetate by Aerobic Bacteria in Surface Water of Great Salt Lake, Utah, USA. <i>Systematic and Applied Microbiology</i> , 1988 , 11, 94-96	4.2	16
93	Alternative Pathways of Acetogenic Ethanol and Methanol Degradation in the Thermophilic Anaerobe. <i>Frontiers in Microbiology</i> , 2019 , 10, 423	5.7	15
92	Identification of the Gene Cluster for the Anaerobic Degradation of 3,5-Dihydroxybenzoate (Resorcylate) in Thauera aromatica Strain AR-1. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 7201	- 1 :8	15
91	Anaerobic Degradation of Hesorcylate by a Nitrate-reducing Bacterium, Thauera aromatica Strain AR-1. <i>Systematic and Applied Microbiology</i> , 1997 , 20, 540-544	4.2	15
90	Net synthesis of acetate from CO2byEubacterium acidaminophilumthrough the glycine reductase pathway. <i>FEMS Microbiology Letters</i> , 1999 , 177, 1-6	2.9	15
89	Anaerobic degradation of 1,3-propanediol by sulfate-reducing and by fermenting bacteria. <i>Antonie Van Leeuwenhoek</i> , 1990 , 57, 205-13	2.1	15
88	Thiamine pyrophosphate stimulates acetone activation by Desulfococcus biacutus as monitored by a fluorogenic ATP analogue. <i>ACS Chemical Biology</i> , 2014 , 9, 1263-6	4.9	14
87	Acetone utilization by sulfate-reducing bacteria: draft genome sequence of Desulfococcus biacutus and a proteomic survey of acetone-inducible proteins. <i>BMC Genomics</i> , 2014 , 15, 584	4.5	14

86	Sodium-dependent succinate decarboxylation by a new anaerobic bacterium belonging to the genus Peptostreptococcus. <i>Antonie Van Leeuwenhoek</i> , 1996 , 70, 11-20	2.1	14
85	Activation of Acetone and Other Simple Ketones in Anaerobic Bacteria. <i>Journal of Molecular Microbiology and Biotechnology</i> , 2016 , 26, 152-64	0.9	13
84	Carbonylation as a key reaction in anaerobic acetone activation by Desulfococcus biacutus. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 6228-35	4.8	13
83	The fermenting bacterium Malonomonas rubra is phylogenetically related to sulfur-reducing bacteria and contains a c-type cytochrome similar to those of sulfur and sulfate reducers. <i>Systematic and Applied Microbiology</i> , 1998 , 21, 340-5	4.2	13
82	Fermentative degradation of dipicolinic acid (pyridine-2,6-dicarboxylic acid) by a defined coculture of strictly anaerobic bacteria. <i>Biodegradation</i> , 1990 , 1, 1-7	4.1	13
81	Crystallization and preliminary X-ray analysis of the tungsten-dependent acetylene hydratase from Pelobacter acetylenicus. <i>Acta Crystallographica Section F: Structural Biology Communications</i> , 2005 , 61, 299-301		12
80	Mechanism of anaerobic ether cleavage: conversion of 2-phenoxyethanol to phenol and acetaldehyde by Acetobacterium sp. <i>Journal of Biological Chemistry</i> , 2002 , 277, 11684-90	5.4	12
79	14CO2 exchange with acetoacetate catalyzed by dialyzed cell-free extracts of the bacterial strain BunN grown with acetone and nitrate. <i>FEBS Journal</i> , 1995 , 228, 677-82		12
78	Mikrobielle Lebensgemeinschaften in Gew\(\text{B}\)sersedimenten. <i>Die Naturwissenschaften</i> , 1989 , 76, 364-372	2	12
77	New motile anaerobic bacteria growing by succinate decarboxylation to propionate. <i>Archives of Microbiology</i> , 1990 , 154, 550	3	12
76	Anaerobium acetethylicum gen. nov., sp. nov., a strictly anaerobic, gluconate-fermenting bacterium isolated from a methanogenic bioreactor. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2015 , 65, 3289-3296	2.2	12
75	The Genus Pelobacter 2006 , 5-11		12
74	Bacillus stamsii sp. nov., a facultatively anaerobic sugar degrader that is numerically dominant in freshwater lake sediment. <i>Systematic and Applied Microbiology</i> , 2015 , 38, 379-89	4.2	11
73	Syntrophic degradation of cadaverine by a defined methanogenic coculture. <i>Applied and Environmental Microbiology</i> , 2009 , 75, 4821-8	4.8	11
72	Enzyme activities in and energetics of acetate metabolism by the mesophilic syntrophically acetate-oxidizing anaerobe Clostridium ultunense. <i>FEMS Microbiology Letters</i> , 2006 , 154, 331-336	2.9	11
71	Desulfolutivibrio sulfoxidireducens gen. nov., sp. nov., isolated from a pyrite-forming enrichment culture and reclassification of Desulfovibrio sulfodismutans as Desulfolutivibrio sulfodismutans comb. nov. <i>Systematic and Applied Microbiology</i> , 2020 , 43, 126105	4.2	10
70	Physiological limits to life in anoxic subseafloor sediment. <i>FEMS Microbiology Reviews</i> , 2020 , 44, 219-23	115.1	10
69	Methane release from sediment seeps to the atmosphere is counteracted by highly active Methylococcaceae in the water column of deep oligotrophic Lake Constance. <i>FEMS Microbiology Ecology</i> , 2016 , 92,	4.3	10

68	Uptake and release of phosphate by littoral sediment of a freshwater lake under the influence of light or mechanical perturbation. <i>Journal of Limnology</i> , 2010 , 69, 54	1.5	10
67	Mechanism of anaerobic degradation of triethanolamine by a homoacetogenic bacterium. <i>Biochemical and Biophysical Research Communications</i> , 2006 , 349, 480-4	3.4	10
66	Fermentative degradation of glyoxylate by a new strictly anaerobic bacterium. <i>Archives of Microbiology</i> , 1991 , 156, 392-397	3	10
65	The Genus Pelobacter 1992 , 3393-3399		10
64	Anaerobic degradation of malonate via malonyl-CoA by Sporomusa malonica, Klebsiella oxytoca, and Rhodobacter capsulatus. <i>Antonie Van Leeuwenhoek</i> , 1994 , 66, 343-50	2.1	9
63	Cultivation of syntrophic anaerobic bacteria in membrane-separated culture devices. <i>FEMS Microbiology Letters</i> , 1987 , 45, 71-76	2.9	8
62	Notes on the use of Greek word roots in genus and species names of prokaryotes. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2016 , 66, 2129-2140	2.2	8
61	Formate and Hydrogen as Electron Shuttles in Terminal Fermentations in an Oligotrophic Freshwater Lake Sediment. <i>Applied and Environmental Microbiology</i> , 2018 , 84,	4.8	7
60	Stereochemistry of the Conversion of 2-Phenoxyethanol into Phenol and Acetaldehyde by Acetobacterium sp <i>Helvetica Chimica Acta</i> , 2003 , 86, 2629-2636	2	7
59	Anaerobic degradation of sorbic acid by sulfate-reducing and fermenting bacteria: pentanone-2 and isopentanone-2 as byproducts. <i>Biodegradation</i> , 1991 , 2, 33-41	4.1	7
58	Energy conservation in fermentative glutarate degradation by the bacterial strain WoGl3. <i>FEMS Microbiology Letters</i> , 1992 , 100, 221-225	2.9	7
57	Cloning, functional expression and characterization of a bifunctional 3-hydroxybutanal dehydrogenase /reductase involved in acetone metabolism by Desulfococcus biacutus. <i>BMC Microbiology</i> , 2016 , 16, 280	4.5	7
56	Mass spectrometric protein identification from two-dimensional gel separation with stain-free detection and visualization using native fluorescence. <i>International Journal of Mass Spectrometry</i> , 2011 , 301, 22-28	1.9	6
55	Propionate acts as carboxylic group acceptor in aspartate fermentation by Propionibacterium freudenreichii. <i>Archives of Microbiology</i> , 1990 , 155, 46-51	3	6
54	"Unknown genome" proteomics: a new NADP-dependent epimerase/dehydratase revealed by N-terminal sequencing, inverted PCR, and high resolution mass spectrometry. <i>Molecular and Cellular Proteomics</i> , 2009 , 8, 122-31	7.6	5
53	Energetic aspects of malate and lactate fermentation by Acetobacterium malicum. <i>FEMS Microbiology Letters</i> , 1991 , 90, 83-87	2.9	5
52	The Genus Propionigenium 2006 , 955-959		5
51	The Genus Propionigenium 1992 , 3948-3951		5

(1999-2018)

50	Two enzymes of the acetone degradation pathway of Desulfococcus biacutus: coenzyme B -dependent 2-hydroxyisobutyryl-CoA mutase and 3-hydroxybutyryl-CoA dehydrogenase. <i>Environmental Microbiology Reports</i> , 2018 , 10, 283-292	3.7	4
49	High-quality-draft genome sequence of the fermenting bacterium type strain GluBS11 (DSM 29698). <i>Standards in Genomic Sciences</i> , 2017 , 12, 24		4
48	An alternative to the glyoxylate shunt. <i>Molecular Microbiology</i> , 2009 , 73, 975-7	4.1	4
47	Decarboxylation of 2,3-Dihydroxybenzoate to Catechol Supports Growth of Fermenting Bacteria. <i>Current Microbiology</i> , 1997 , 35, 270-273	2.4	4
46	Principles of Anaerobic Degradation of Organic Compounds 2008, 169-192		4
45	A modified diffusion-based methane sensor and its application in freshwater sediment. <i>Limnology and Oceanography: Methods</i> , 2006 , 4, 275-283	2.6	4
44	Energetic Aspects of Methanogenic Feeding Webs171-178		4
43	Isolation and characterization of a desulforubidin-containing sulfate-reducing bacterium growing with glycolate 1995 , 164, 271		4
42	Naming classes of prokaryotes based on the rules of Latin grammar. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2019 , 69, 1526-1527	2.2	4
41	Energy-Conserving Enzyme Systems Active During Syntrophic Acetate Oxidation in the Thermophilic Bacterium. <i>Frontiers in Microbiology</i> , 2019 , 10, 2785	5.7	4
40	Synthesis of short-chain hydroxyaldehydes and their 2,4-dinitrophenylhydrazone derivatives, and separation of their isomers by high-performance liquid chromatography. <i>Journal of Chromatography A</i> , 2018 , 1531, 143-150	4.5	4
39	Methanogens: Syntrophic Metabolism 2018 , 1-31		3
38	Attachment to amorphous iron sulfide increases the activity of strictly anaerobic, gallic acid-degrading bacteria. <i>FEMS Microbiology Letters</i> , 1991 , 78, 115-120	2.9	3
37	Methanogenic degradation of hydroquinone in an anaerobic fixed-bed reactor. <i>Applied Microbiology and Biotechnology</i> , 1989 , 32, 346	5.7	3
36	Hydroquinone degradation via reductive dehydroxylation of gentisyl-CoA by a strictly anaerobic fermenting bacterium 1994 , 161, 25		3
35	Ferrous iron oxidation by denitrifying bacteria in profundal sediments of a deep lake (Lake Constance)		3
34	Syntrophy in Methanogenic Degradation. <i>Microbiology Monographs</i> , 2018 , 153-192	0.8	3
33	13C/12C Stable Isotope Fractionation of Toluene by Anaerobic Degradation 1999 , 219-226		3

32	Draft genome of Elstera litoralis, a freshwater epilithic biofilm associated bacterium from littoral zone of Lake Constance. <i>Marine Genomics</i> , 2015 , 24 Pt 3, 223-4	1.9	2
31	Crystallization and preliminary X-ray analysis of the molybdenum-dependent pyrogallol-phloroglucinol transhydroxylase of Pelobacter acidigallici. <i>Acta Crystallographica Section D: Biological Crystallography</i> , 2002 , 58, 343-5		2
30	Mechanistic aspects of molybdenum-containing enzymes		2
29	Proposal to change the name Rhodoligotrophos Fukuda et al. 2012, 1947 to Rhodoligotrophus. Request for an Opinion. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2013 , 63, 354	5 ^{2.2}	2
28	The Family Syntrophomonadaceae 2014 , 371-379		2
27	Methylosoma 2016 , 1-4		2
26	Syntrophus 2015 , 1-5		1
25	Syntrophobotulus 2015 , 1-4		1
24	Anaerovorax 2015 , 1-3		1
23	Principles of Anaerobic Degradation of Organic Compounds 2005 , 229-257		1
22	Microbial populations in wetwood of European white fir (Abies alba Mill.). <i>FEMS Microbiology Letters</i> , 1986 , 38, 141-150	2.9	1
21	The use of Greek and Latin prepositions and prefixes in compound names: proposed emendation of Appendix 9 of the International Code of Nomenclature of Prokaryotes. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2019 , 69, 1831-1832	2.2	1
20	Use of Greek in the prokaryotic nomenclature: proposal to change Principle 3, Recommendation 6, Rule 7, Rule 65 and Appendix 9 of the International Code of Nomenclature of Prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 3559-3560	2.2	1
19	Synergistic interactions in the microbial world 2002 , 81, 257		1
18	Initiates Degradation of Aniline With the Production of Phenylphosphoamidate and 4-Aminobenzoate as Intermediates Through Synthases and Carboxylases From Different Gene Clusters. <i>Frontiers in Microbiology</i> , 2020 , 11, 2064	5.7	1
17	Methyloglobulus 2016 , 1-4		1
16	Activation of short-chain ketones and isopropanol in sulfate-reducing bacteria. <i>BMC Microbiology</i> , 2021 , 21, 50	4.5	1
15	gen. nov. sp. nov., a new dissimilatory phosphite-oxidizing anaerobic bacterium isolated from anaerobic sewage sludge. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2021 , 71,	2.2	1

LIST OF PUBLICATIONS

14	Resorcinol Hydroxylase of Azoarcus anaerobius: Molybdenum Dependence, Activity, and Heterologous Expression. <i>Current Microbiology</i> , 2020 , 77, 3385-3396	2.4	0
13	Two Marine Desulfotomaculum spp. of Different Origin are Capable of Utilizing Acetone and Higher Ketones. <i>Current Microbiology</i> , 2021 , 78, 1763-1770	2.4	O
12	Pelorhabdus rhamnosifermentans gen. nov., sp. nov., a strictly anaerobic rhamnose degrader from freshwater lake sediment. <i>Systematic and Applied Microbiology</i> , 2021 , 44, 126225	4.2	O
11	Anaerobium 2020 , 1-7		
10	Introduction to Microbial Hydrocarbon Production: Bioenergetics 2018, 1-17		
9	Methanogens: Syntrophic Metabolism 2019 , 179-209		
8	Pelospora 2015 , 1-4		
7	Ilyobacter 2015 , 1-4		
6	Malonomonas 2015 , 1-2		
5	Pelobacter 2015 , 1-6		
4	Propionigenium 2015 , 1-3		
3	Principles of Anaerobic Degradation of Organic Compounds 2001 , 169-192		
2	Introduction to Microbial Hydrocarbon Production: Bioenergetics 2019 , 1-17		
1	Further guidelines for the formation of compound specific and subspecific epithets. A proposal to emend Appendix 9 of the International Code of Nomenclature of Prokaryotes. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2020 , 70, 3561-3562	2.2	