Moises Bastos-Neto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1164350/publications.pdf

Version: 2024-02-01

279487 301761 1,635 61 23 39 citations h-index g-index papers 62 62 62 1783 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Effect of coal fly ash treatments on synthesis of high-quality zeolite A as a potential additive for warm mix asphalt. Materials Chemistry and Physics, 2022, 275, 125197.	2.0	21
2	Deep learning analysis of Ar, Xe, Kr, and O2 adsorption on Activated Carbon and Zeolites using ANN approach. Chemical Engineering and Processing: Process Intensification, 2022, 170, 108662.	1.8	18
3	Insights into optimized synthesis conditions of hollow microspheres of silica for water vapor adsorption. Chemical Engineering Research and Design, 2022, 177, 583-593.	2.7	2
4	Experimental and theoretical assessment of CO2 capture by adsorption on clinoptilolite. Chemical Engineering Research and Design, 2022, 177, 640-652.	2.7	10
5	Water adsorption and hydrothermal stability of CHA zeolites with different Si/Al ratios and compensating cations. Catalysis Today, 2022, 390-391, 99-108.	2.2	11
6	Neural network protocol to predict interfacial tension for CO ₂ /CH ₄ /Water-Brine ternary systems under reservoir temperature and pressure ranges. Petroleum Science and Technology, 2022, 40, 181-200.	0.7	2
7	LTA Zeolite Characterization Based on Pore Type Distribution. Industrial & Engineering Chemistry Research, 2022, 61, 2268-2279.	1.8	8
8	Kaolinite-based zeolites synthesis and their application in CO2 capture processes. Fuel, 2022, 320, 123953.	3.4	15
9	Assessing mass transfer rates in porous adsorbents using gas adsorption microcalorimetry. Chemical Engineering Science, 2021, 229, 115983.	1.9	5
10	Siloxane adsorption by porous silica synthesized from residual sand of wastewater treatment. Journal of Environmental Chemical Engineering, 2021, 9, 104805.	3.3	14
11	Parametric Analysis of a Moving Bed Temperature Swing Adsorption (MBTSA) Process for Postcombustion CO ₂ Capture. Industrial & Engineering Chemistry Research, 2021, 60, 10736-10752.	1.8	16
12	High-temperature sorption of sodium vapors in typical outlet streams from biomass gasifiers. Brazilian Journal of Chemical Engineering, 2021, 38, 403.	0.7	О
13	Oxidation Behavior of Maraging 300 Alloy Exposed to Nitrogen/Water Vapor Atmosphere at 500 °C. Metals, 2021, 11, 1021.	1.0	2
14	H ₂ S and H ₂ O Combined Effect on CO ₂ Capture by Amino Functionalized Hollow Microsphere Silicas. Industrial & Engineering Chemistry Research, 2021, 60, 10139-10154.	1.8	6
15	Performance of adsorption isotherms kernels of CO2 models for \hat{I}^3 -alumina characterization. Adsorption, 2021, 27, 1035-1042.	1.4	0
16	Water adsorption in fresh and thermally aged zeolites: equilibrium and kinetics. Adsorption, 2021, 27, 1043-1053.	1.4	2
17	Activated Carbons for H2S Capture. Engineering Materials, 2021, , 197-215.	0.3	0
18	Special issue on the 13th Brazilian meeting on adsorption. Adsorption, 2021, 27, 1001-1002.	1.4	0

#	Article	IF	CITATIONS
19	Insights into CO2 adsorption in amino-functionalized SBA-15 synthesized at different aging temperature. Adsorption, 2020, 26, 225-240.	1.4	36
20	Evaluation of the thermal regeneration of an amine-grafted mesoporous silica used for CO2/N2 separation. Adsorption, 2020, 26, 203-215.	1.4	18
21	Adsorption microcalorimetry as a tool in the characterization of amine-grafted mesoporous silicas for CO2 capture. Adsorption, 2020, 26, 165-175.	1.4	23
22	Assessment of CO2 desorption from 13X zeolite for a prospective TSA process. Adsorption, 2020, 26, 813-824.	1.4	26
23	Ethylene adsorption on chitosan/zeolite composite films for packaging applications. Food Packaging and Shelf Life, 2020, 26, 100584.	3.3	28
24	Assessment of the potential use of zeolites synthesized from power plant fly ash to capture CO2 under post-combustion scenario. Adsorption, 2020, 26, 1153-1164.	1.4	14
25	Effect of ultramicropores on the mechanisms of H2S retention from biogas. Chemical Engineering Research and Design, 2020, 154, 241-249.	2.7	11
26	Effect of Additives to Improve Calcium-Based Sorbents in Semi-Dry Flue Gas Desulphurization. Emission Control Science and Technology, 2020, 6, 105-112.	0.8	12
27	Representative Pores: An Efficient Method to Characterize Activated Carbons. Frontiers in Chemistry, 2020, 8, 595230.	1.8	10
28	CO2 adsorption capacity of zeolites synthesized from coal fly ashes. Fuel, 2020, 276, 118143.	3.4	62
29	Simulation of CO2/CH4 high pressure separation on microporous activated carbon. Chemical Engineering Communications, 2019, 206, 1414-1425.	1.5	2
30	Investigation of premature aging of zeolites used in the drying of gas streams. Chemical Engineering Communications, 2019, 206, 1367-1374.	1.5	12
31	Nanosponges for Carbon Dioxide Sequestration. Sustainable Agriculture Reviews, 2019, , 1-39.	0.6	0
32	Assessing the potential of nanoporous carbon adsorbents from polyethylene terephthalate (PET) to separate CO2 from flue gas. Adsorption, 2018, 24, 279-291.	1.4	23
33	Pure and Binary Adsorption of Carbon Dioxide and Nitrogen on AQSOA FAM Z02. Journal of Chemical & Engineering Data, 2018, 63, 661-670.	1.0	11
34	Insights on the Mechanisms of H ₂ S Retention at Low Concentration on Impregnated Carbons. Industrial & Description of Engineering Chemistry Research, 2018, 57, 2248-2257.	1.8	22
35	Prediction of the monocomponent adsorption of H2S and mixtures with CO2 and CH4 on activated carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 342-350.	2.3	28
36	Simple Procedure to Estimate Mass Transfer Coefficients from Uptake Curves on Activated Carbons. Chemical Engineering and Technology, 2018, 41, 1622-1630.	0.9	9

#	Article	IF	CITATIONS
37	CO2 Capture with Mesoporous Silicas Modified with Amines by Double Functionalization: Assessment of Adsorption/Desorption Cycles. Materials, 2018, 11, 887.	1.3	36
38	Microwave-assisted nitric acid treatment of sepiolite and functionalization with polyethylenimine applied to CO2 capture and CO2/N2 separation. Applied Surface Science, 2017, 410, 315-325.	3.1	43
39	Preparation of biomass-based activated carbons and their evaluation for biogas upgrading purposes. Industrial Crops and Products, 2017, 109, 134-140.	2.5	65
40	Carbon Dioxide Capture by Pressure Swing Adsorption. Energy Procedia, 2017, 114, 2182-2192.	1.8	63
41	CO ₂ and H ₂ S Removal from CH ₄ -Rich Streams by Adsorption on Activated Carbons Modified with K ₂ CO ₃ , NaOH, or Fe ₂ O ₃ O ₃ . Energy & Sub>Sub>Sub>Sub>Sub>Sub>Sub>Sub>Sub>Sub>	2.5	64
42	Adsorption equilibria of CO2 and CH4 in cation-exchanged zeolites 13X. Adsorption, 2016, 22, 71-80.	1.4	79
43	CO2/CH4 adsorption separation process using pore expanded mesoporous silicas functionalizated by APTES grafting. Adsorption, 2015, 21, 565-575.	1.4	29
44	On the structural, textural and morphological features of Fe-based catalysts supported on polystyrene mesoporous carbon for Fischer–Tropsch synthesis. Applied Catalysis A: General, 2015, 495, 72-83.	2.2	20
45	Mineral sorbents for downstream sodium capture in biomass gasifiers. Fuel Processing Technology, 2015, 138, 629-636.	3.7	5
46	Evaluation of carbon dioxide–nitrogen separation through fixed bed measurements and simulations. Adsorption, 2014, 20, 945-957.	1.4	20
47	Studies on the adsorption behavior of CO2-CH4 mixtures using activated carbon. Brazilian Journal of Chemical Engineering, 2013, 30, 939-951.	0.7	60
48	Assessment of hydrogen storage by physisorption in porous materials. Energy and Environmental Science, 2012, 5, 8294.	15.6	75
49	Adsorption Measurements of Nitrogen and Methane in Hydrogen-Rich Mixtures at High Pressures. Industrial & Description of the Pressures of Nitrogen and Methane in Hydrogen-Rich Mixtures at High Pressures.	1.8	9
50	Adsorption equilibria of O2, Ar, Kr and Xe on activated carbon and zeolites: single component and mixture data. Adsorption, 2011, 17, 371-383.	1.4	119
51	Dynamic bed measurements of CO adsorption on microporous adsorbents at high pressures for hydrogen purification processes. Separation and Purification Technology, 2011, 77, 251-260.	3.9	37
52	Breakthrough Curves of Methane at High Pressures for H ₂ Purification Processes. Chemie-Ingenieur-Technik, 2011, 83, 183-190.	0.4	6
53	Experimental analysis of the efficiency on charge/discharge cycles in natural gas storage by adsorption. Fuel, 2011, 90, 113-119.	3.4	47
54	H2 Reinigung - Experiment und Vorhersage. Chemie-Ingenieur-Technik, 2010, 82, 1573-1573.	0.4	0

#	Article	IF	CITATIONS
55	Adsorption Equilibria of Natural Gas Components on Activated Carbon: Pure and Mixed Gas Isotherms. Adsorption Science and Technology, 2008, 26, 323-332.	1.5	26
56	Effects of textural and surface characteristics of microporous activated carbons on the methane adsorption capacity at high pressures. Applied Surface Science, 2007, 253, 5721-5725.	3.1	88
57	Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride. Microporous and Mesoporous Materials, 2007, 100, 361-364.	2.2	165
58	A Theoretical and Experimental Study of Charge and Discharge Cycles in a Storage Vessel for Adsorbed Natural Gas. Adsorption, 2005, 11, 147-157.	1.4	50
59	Methane Adsorption Storage Using Microporous Carbons Obtained from Coconut Shells. Adsorption, 2005, 11, 911-915.	1.4	42
60	Zinc Ferrite Nanoparticles via Coprecipitation Modified Method: Glycerol as Structure Directing and Stabilizing Agent. Journal of the Brazilian Chemical Society, 0, , .	0.6	6
61	ZEÓLITA 4A PARA PURIFICAÇÃO DO GÃS DE ATERRO SANITÃRIO. Quimica Nova, 0, , .	0.3	0