Emad H Aly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1164308/publications.pdf Version: 2024-02-01

EMAD H AIV

#	Article	IF	CITATIONS
1	Multiple solutions for nanofluids flow and heat transfer in porous medium with velocity slip and temperature jump. International Communications in Heat and Mass Transfer, 2022, 131, 105831.	2.9	33
2	Impact of bioconvection on the free stream flow of a pseudoplastic nanofluid past a rotating cone. Heat Transfer, 2022, 51, 4544-4561.	1.7	15
3	Exact Solutions for Wall Jet Flow of Hybrid Nanofluid. Journal of Nanofluids, 2022, 11, 373-382.	1.4	7
4	Wall jet flow and heat transfer of a hybrid nanofluid subject to suction/injection with thermal radiation. Thermal Science and Engineering Progress, 2022, 32, 101294.	1.3	16
5	MHD and Thermal Radiation Flow of Graphene Casson Nanofluid Stretching/Shrinking Sheet. International Journal of Applied and Computational Mathematics, 2022, 8, 1.	0.9	9
6	MHD slip flow of a Casson hybrid nanofluid over a stretching/shrinking sheet with thermal radiation. Chinese Journal of Physics, 2022, 80, 74-106.	2.0	29
7	MHD Marangoni boundary layer problem for hybrid nanofluids with thermal radiation. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 897-913.	1.6	28
8	Convective Heat Transfer of a Hybrid Nanofluid over a Nonlinearly Stretching Surface with Radiation Effect. Mathematics, 2021, 9, 2220.	1.1	22
9	Flow and Heat Transfer Past a Stretching/Shrinking Sheet Using Modified Buongiorno Nanoliquid Model. Mathematics, 2021, 9, 3047.	1.1	11
10	Homotopy perturbation method for peristaltic motion of gold-blood nanofluid with heat source. International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 3121-3138.	1.6	11
11	3D flow and heat transfer of micropolar fluid suspended with mixture of nanoparticles (Ag-CuO/H ₂ O) driven by an exponentially stretching surface. Multidiscipline Modeling in Materials and Structures, 2020, 16, 1691-1707.	0.6	8
12	Bödewadt ï¬,ow and heat transfer of hybrid nanomaterial. International Journal of Ambient Energy, 2020, , 1-9.	1.4	13
13	MHD flow and heat transfer near stagnation point over a stretching/shrinking surface with partial slip and viscous dissipation: Hybrid nanofluid versus nanofluid. Powder Technology, 2020, 367, 192-205.	2.1	163
14	Impact of Velocity Second Slip and Inclined Magnetic Field on Peristaltic Flow Coating with Jeffrey Fluid in Tapered Channel. Coatings, 2020, 10, 30.	1.2	16
15	Merkin and Needham wall jet problem for hybrid nanofluids with thermal energy. European Journal of Mechanics, B/Fluids, 2020, 83, 195-204.	1.2	31
16	Radiation and Mixed Convection Magnetohydrodynamics Boundary Layer of Hybrid Cu–Al ₂ O ₃ /Water Nanofluid Flow Over a Wall Jet. Journal of Nanofluids, 2020, 9, 152-160.	1.4	8
17	Catalogue of existence of the multiple physical solutions of hydromagnetic flow over a stretching/shrinking sheet for viscoelastic second-grade and Walter's B fluids. Physica Scripta, 2019, 94, 105223.	1.2	11
18	Effect of the Variable Viscosity on the Peristaltic Flow of Newtonian Fluid Coated withMagnetic Field: Application of Adomian Decomposition Method for Endoscope. Coatings, 2019, 9, 524.	1.2	12

Emad H Aly

#	Article	IF	CITATIONS
19	MHD flow and heat transfer over a permeable stretching/shrinking sheet in a hybrid nanofluid with a convective boundary condition. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 3012-3038.	1.6	121
20	Dual exact solutions of graphene–water nanofluid flow over stretching/shrinking sheet with suction/injection and heat source/sink: Critical values and regions with stability. Powder Technology, 2019, 342, 528-544.	2.1	69
21	Additional Results for the Peristaltic Transport of Viscous Nanofluid in an Asymmetric Channel with Effects of the Convective Conditions. The National Academy of Sciences, India, 2018, 41, 59-63.	0.8	4
22	A Comparative Study of Nanofluids' Effect on Decreasing the Water Velocity Flowing from the Torrents. Journal of Computational and Theoretical Nanoscience, 2018, 15, 1876-1885.	0.4	0
23	Analytical Solution for Peristaltic Transport of Viscous Nanofluid in an Asymmetric Channel with Full Slip and Convective Conditions. Communications in Theoretical Physics, 2017, 68, 96.	1.1	9
24	Magnetohydrodynamic and thermal radiation effects on the boundary-layer flow due to a moving extensible surface with the velocity slip model: A comparative study of four nanofluids. Journal of Magnetism and Magnetic Materials, 2017, 422, 440-451.	1.0	31
25	Positron and positronium studies on Cr-doped lithium aluminum silicate glass. Materials Express, 2016, 6, 237-244.	0.2	1
26	Influence of slip and convective boundary conditions on peristaltic transport of non-Newtonian nanofluids in an inclined asymmetric channel. AEJ - Alexandria Engineering Journal, 2016, 55, 2209-2220.	3.4	58
27	A Comparative Study of Five Nanofluids for Heat Transfer of Squeezing and Unsteady Flow Between Two Parallel Plates with Vogel's Model of Viscosity. Journal of Computational and Theoretical Nanoscience, 2016, 13, 3097-3104.	0.4	2
28	Existence of the multiple exact solutions for nanofluid flow over a stretching/shrinking sheet embedded in a porous medium at the presence of magnetic field with electrical conductivity and thermal radiation effects. Powder Technology, 2016, 301, 760-781.	2.1	54
29	Exact analysis for the effect of heat transfer on MHD and radiation Marangoni boundary layer nanofluid flow past a surface embedded in a porous medium. Journal of Molecular Liquids, 2016, 215, 625-639.	2.3	82
30	Semi-analytical solution for the flow of a nanofluid over a permeable stretching/shrinking sheet with velocity slip using Buongiorno's mathematical model. European Journal of Mechanics, B/Fluids, 2016, 58, 39-49.	1.2	28
31	Heat Transfer of Squeezing and Unsteady Flow Between Two Parallel Plates with Reynold's Model of Viscosity: A Comparative Study for Five Nanofluids. Journal of Computational and Theoretical Nanoscience, 2016, 13, 5052-5059.	0.4	0
32	Analysis of fluid motion and heat transport on magnetohydrodynamic boundary layer past a vertical power law stretching sheet with hydrodynamic and thermal slip effects. AIP Advances, 2015, 5, .	0.6	3
33	Magnetohydrodynamic Steady Boundary Layer Stagnation Point of Nanofluid Flow with Heat and Mass Transfer Over a Stretching Sheet with Full Slip Effects. Journal of Computational and Theoretical Nanoscience, 2015, 12, 5379-5385.	0.4	1
34	Radiation and MHD Boundary Layer Stagnation-Point of Nanofluid Flow towards a Stretching Sheet Embedded in a Porous Medium: Analysis of Suction/Injection and Heat Generation/Absorption with Effect of the Slip Model. Mathematical Problems in Engineering, 2015, 2015, 1-20.	0.6	15
35	Effect of the Velocity Slip Boundary Condition on the Flow and Heat Transfer of Nanofluids Over a Stretching Sheet. Journal of Computational and Theoretical Nanoscience, 2015, 12, 2428-2436.	0.4	2
36	Effect of the Velocity Second Slip Boundary Condition on the Peristaltic Flow of Nanofluids in an Asymmetric Channel: Exact Solution. Abstract and Applied Analysis, 2014, 2014, 1-11.	0.3	13

Emad H Aly

#	Article	IF	CITATIONS
37	Exact Analytical Solution for the Peristaltic Flow of Nanofluids in an Asymmetric Channel with Slip Effect of the Velocity, Temperature and Concentration. Journal of Mechanics, 2014, 30, 411-422.	0.7	34
38	Exact and numerical solutions of MHD nano boundary-layer flows over stretching surfaces in a porous medium. Applied Mathematics and Computation, 2014, 232, 191-204.	1.4	38
39	Thermal Radiation Effects on Magnetohydrodynamic Boundary-Layer Flow Due to a Moving Extensible Surface in Nanofluids. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1756-1765.	0.4	6
40	Suction and Injection Analysis of MHD Nano Boundary-Layer Over a Stretching Surface Through a Porous Medium with Partial Slip Boundary Condition. Journal of Computational and Theoretical Nanoscience, 2014, 11, 827-839.	0.4	13
41	Analytical and Numerical Investigations for the Flow and Heat Transfer of Nanofluids over a Stretching Sheet with Partial Slip Boundary Condition. Applied Mathematics and Information Sciences, 2014, 8, 1639-1645.	0.7	11
42	New Exact Solutions for Boundary-Layer Flow of a Nanofluid Past a Stretching Sheet. Journal of Computational and Theoretical Nanoscience, 2013, 10, 2591-2594.	0.4	27
43	Exact Analytical Solution for Suction and Injection Flow with Thermal Enhancement of Five Nanofluids over an Isothermal Stretching Sheet with Effect of the Slip Model: A Comparative Study. Abstract and Applied Analysis, 2013, 2013, 1-14.	0.3	22
44	New Analytical and Numerical Solutions for Mixed Convection Boundary-Layer Nanofluid Flow along an Inclined Plate Embedded in a Porous Medium. Journal of Applied Mathematics, 2013, 2013, 1-7.	0.4	9
45	Exact Analytical Solution of the Peristaltic Nanofluids Flow in an Asymmetric Channel with Flexible Walls and Slip Condition: Application to the Cancer Treatment. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-8.	0.7	46
46	On the Exact Analytical and Numerical Solutions of Nano Boundary-Layer Fluid Flows. Abstract and Applied Analysis, 2012, 2012, 1-22.	0.3	6
47	Advances in the Adomian decomposition method for solving two-point nonlinear boundary value problems with Neumann boundary conditions. Computers and Mathematics With Applications, 2012, 63, 1056-1065.	1.4	37
48	Exact solutions for the transformed reduced Ostrovsky equation via the -expansion method in terms of Weierstrass-elliptic and Jacobian-elliptic functions. Wave Motion, 2012, 49, 296-308.	1.0	58
49	Analytical and ChPDM analysis of MHD mixed convection over a vertical flat plate embedded in a porous medium filled with water at 4°C. Applied Mathematical Modelling, 2011, 35, 5182-5197.	2.2	21
50	Similarity solutions of a MHD boundary-layer flow past a continuous moving surface. International Journal of Engineering Science, 2007, 45, 486-503.	2.7	18
51	Exact analytical solution for a thermal boundary layer in a saturated porous medium. Applied Mathematics Letters, 2006, 19, 1351-1355.	1.5	9
52	Mechanical and thermal characteristics of a mixed convection boundary-layer flow in a saturated porous medium. International Journal of Heat and Mass Transfer, 2006, 49, 3855-3865.	2.5	12