
## A Cuneyt Tas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11643079/publications.pdf Version: 2024-02-01



Δ CLINEVT TAS

| #  | Article                                                                                                                                                                                                                                                                                          | IF        | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 1  | Transformation of Brushite (CaHPO <sub>4</sub> ·2H <sub>2</sub> O) to Whitlockite<br>(Ca <sub>9</sub> Mg(HPO <sub>4</sub> )(PO <sub>4</sub> ) <sub>6</sub> ) or Other CaPs in<br>Physiologically Relevant Solutions. Journal of the American Ceramic Society, 2016, 99, 1200-1206.               | 3.8       | 31        |
| 2  | Aragonite coating solutions (ACS) based on artificial seawater. Applied Surface Science, 2015, 330, 262-269.                                                                                                                                                                                     | 6.1       | 10        |
| 3  | Development of a Gas-Fed Plasma Source for Pulsed High-Density Plasma/Material Interaction Studies.<br>IEEE Transactions on Plasma Science, 2014, 42, 3245-3252.                                                                                                                                 | 1.3       | 5         |
| 4  | Synthetic Aragonite ( <scp><scp>CaCO</scp></scp> <sub>3</sub> ) as a Potential Additive in Calcium<br>Phosphate Cements: Evaluation in Trisâ€Free <scp>SBF</scp> at 37°C. Journal of the American Ceramic<br>Society, 2014, 97, 3052-3061.                                                       | 3.8       | 8         |
| 5  | The use of physiological solutions or media in calcium phosphate synthesis and processing. Acta<br>Biomaterialia, 2014, 10, 1771-1792.                                                                                                                                                           | 8.3       | 86        |
| 6  | Grade-1 titanium soaked in a DMEM solution at 37°C. Materials Science and Engineering C, 2014, 36, 84-94.                                                                                                                                                                                        | 7.3       | 7         |
| 7  | Molten salt synthesis of potassium-containing hydroxyapatite microparticles used as protein substrate. Materials Letters, 2014, 128, 421-424.                                                                                                                                                    | 2.6       | 6         |
| 8  | Submicron spheres of amorphous calcium phosphate forming in a stirred SBF solution at 55°C.<br>Journal of Non-Crystalline Solids, 2014, 400, 27-32.                                                                                                                                              | 3.1       | 19        |
| 9  | X-ray-amorphous calcium phosphate (ACP) synthesis in a simple biomineralization medium. Journal of<br>Materials Chemistry B, 2013, 1, 4511.                                                                                                                                                      | 5.8       | 23        |
| 10 | Non-stirred synthesis of Na- and Mg-doped, carbonated apatitic calcium phosphate. Ceramics<br>International, 2013, 39, 1485-1493.                                                                                                                                                                | 4.8       | 7         |
| 11 | Comparison of titanium soaked in 5M NaOH or 5M KOH solutions. Materials Science and Engineering C, 2013, 33, 327-339.                                                                                                                                                                            | 7.3       | 59        |
| 12 | Testing of Brushite<br>( <scp><scp>CaHPO</scp></scp> <sub>4</sub> ·2 <scp><scp>H</scp></scp> <sub>2</sub> <scp>Oin Synthetic Biomineralization Solutions and <i>In Situ</i> Crystallization of Brushite<br/>Microâ€Granules. Journal of the American Ceramic Society, 2012, 95, 2178-2188.</scp> | >)<br>3.8 | 38        |
| 13 | Calcium metal to synthesize amorphous or cryptocrystalline calcium phosphates. Materials Science and Engineering C, 2012, 32, 1097-1106.                                                                                                                                                         | 7.3       | 16        |
| 14 | Granules of Brushite and Octacalcium Phosphate from Marble. Journal of the American Ceramic Society, 2011, 94, 3722-3726.                                                                                                                                                                        | 3.8       | 16        |
| 15 | Accelerated transformation of brushite to octacalcium phosphate in new biomineralization media between 36.5°C and 80°C. Materials Science and Engineering C, 2011, 31, 1136-1143.                                                                                                                | 7.3       | 37        |
| 16 | Brushite (CaHPO 4 ·2H 2 O) to octacalcium phosphate (Ca 8 (HPO 4 ) 2 (PO 4 ) 4 ·5H 2 O) transformation<br>in DMEM solutions at 36.5 °C. Materials Science and Engineering C, 2010, 30, 245-254.                                                                                                  | 7.3       | 162       |
| 17 | A new approach in biomimetic synthesis of calcium phosphate coatings using lactic acid–Na lactate<br>buffered body fluid solution. Acta Biomaterialia, 2010, 6, 2282-2288.                                                                                                                       | 8.3       | 54        |
| 18 | Development of biomineralization solutions to facilitate the transformation of brushite<br>(CaHPO <inf>4</inf> ·2H <inf>2</inf> O) into octacalcium phosphate<br>(Ca <inf>8</inf> (HPO <inf>4</inf> ) <inf>2</inf> (PO <inf>4</inf> ) <inf>4</inf> ·5H <inf>2</inf> O). , 2010, , .              |           | 1         |

A CUNEYT TAS

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Preparation of biphasic brushite-apatite orthopedic cement powders by chemical precipitation. , 2010, ,                                                                                              |     | 0         |
| 20 | A novel particle morphology for the brushite<br>(CaHPO <inf>4</inf> ·2H <inf>2</inf> O) powders used in orthopedic cements. , 2010, ,                                                                |     | 0         |
| 21 | Monetite (CaHPO <sub>4</sub> ) Synthesis in Ethanol at Room Temperature. Journal of the American<br>Ceramic Society, 2009, 92, 2907-2912.                                                            | 3.8 | 68        |
| 22 | Monodisperse Calcium Carbonate Microtablets Forming at 70°C in Prerefrigerated<br>CaCl <sub>2</sub> –Gelatin–Urea Solutions. International Journal of Applied Ceramic Technology,<br>2009, 6, 53-59. | 2.1 | 29        |
| 23 | Using a synthetic body fluid (SBF) solution of 27ÂmM HCO3â^' to make bone substitutes more<br>osteointegrative. Materials Science and Engineering C, 2008, 28, 129-140.                              | 7.3 | 102       |
| 24 | In Vitro Comparison of the Apatite Inducing Ability of Three Different SBF Solutions on Ti6A14V.<br>Ceramic Engineering and Science Proceedings, 2008, , 111-118.                                    | 0.1 | 0         |
| 25 | A protocol to develop crack-free biomimetic coatings on Ti6Al4V substrates. Journal of Materials<br>Research, 2007, 22, 1593-1600.                                                                   | 2.6 | 20        |
| 26 | A new rhenanite (β-NaCaPO4) and hydroxyapatite biphasic biomaterial for skeletal repair. Journal of<br>Biomedical Materials Research - Part B Applied Biomaterials, 2007, 80B, 304-316.              | 3.4 | 42        |
| 27 | Preparation of Zn-doped β-tricalcium phosphate (β-Ca3(PO4)2) bioceramics. Materials Science and<br>Engineering C, 2007, 27, 394-401.                                                                 | 7.3 | 58        |
| 28 | Osteoblast proliferation on neat and apatite-like calcium phosphate-coated titanium foam scaffolds.<br>Materials Science and Engineering C, 2007, 27, 432-440.                                       | 7.3 | 56        |
| 29 | Formation of Calcium Phosphate Whiskers in Hydrogen Peroxide (H2O2) Solutions at 90°C. Journal of the American Ceramic Society, 2007, 90, 2358-2362.                                                 | 3.8 | 30        |
| 30 | Porous, Biphasic CaCO3-Calcium Phosphate Biomedical Cement Scaffolds from Calcite (CaCO3)<br>Powder. International Journal of Applied Ceramic Technology, 2007, 4, 152-163.                          | 2.1 | 28        |
| 31 | In vitro testing of calcium phosphate (HA, TCP, and biphasic HA-TCP) whiskers. Journal of Biomedical<br>Materials Research - Part A, 2006, 78A, 481-490.                                             | 4.0 | 69        |
| 32 | Electroless deposition of brushite (CaHPO <sub>4</sub> • 2H <sub>2</sub> O) crystals on Ti–6Al–4V at<br>room temperature. International Journal of Materials Research, 2006, 97, 639-644.            | 0.3 | 15        |
| 33 | Synthesis of HA-Seeded TTCP (Ca4(PO4)2O) Powders at 1230oC from Ca(CH3COO)2.H2O and NH4H2PO4.<br>Journal of the American Ceramic Society, 2005, 88, 3353-3360.                                       | 3.8 | 43        |
| 34 | Rapid coating of Ti6Al4V at room temperature with a calcium phosphate solution similar to 10×<br>simulated body fluid. Journal of Materials Research, 2004, 19, 2742-2749.                           | 2.6 | 205       |
| 35 | Microwave-assisted synthesis of calcium phosphate nanowhiskers. Journal of Materials Research, 2004, 19, 1876-1881.                                                                                  | 2.6 | 61        |
| 36 | Chemical Processing of CaHPO4.2H2O:. Its Conversion to Hydroxyapatite. Journal of the American Ceramic Society, 2004, 87, 2195-2200.                                                                 | 3.8 | 81        |

A CUNEYT TAS

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Chemical Synthesis of Crystalline, Pure or Mn-doped ZnGa <sub>2</sub> O <sub>4</sub> Powders at 90<br>°C. Journal of Materials Research, 2002, 17, 1425-1433.                                                                             | 2.6  | 23        |
| 38 | Preparation of Strontium―and Zincâ€Doped LaGaO <sub>3</sub> Powders via Precipitation in the<br>Presence of Urea and/or Enzyme Urease. Journal of the American Ceramic Society, 2002, 85, 1414-1420.                                      | 3.8  | 20        |
| 39 | Synthesis of Gallium Oxide Hydroxide Crystals in Aqueous Solutions with or without Urea and Their Calcination Behavior. Journal of the American Ceramic Society, 2002, 85, 1421-1429.                                                     | 3.8  | 155       |
| 40 | X-ray diffraction data for flux-grown calcium hydroxyapatite whiskers. Powder Diffraction, 2001, 16, 102-106.                                                                                                                             | 0.2  | 23        |
| 41 | Molten Salt Synthesis of Calcium Hydroxyapatite Whiskers. Journal of the American Ceramic Society, 2001, 84, 295-300.                                                                                                                     | 3.8  | 145       |
| 42 | Chemical preparation of aluminum borate whiskers. Powder Diffraction, 2000, 15, 104-107.                                                                                                                                                  | 0.2  | 10        |
| 43 | Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluids. Biomaterials, 2000, 21, 1429-1438.                                                                                                                    | 11.4 | 529       |
| 44 | Chemical Preparation of Pure and Strontium―and/or Magnesiumâ€Đoped Lanthanum Gallate Powders.<br>Journal of the American Ceramic Society, 2000, 83, 2954-2960.                                                                            | 3.8  | 165       |
| 45 | Dip Coating of Calcium Hydroxyapatite on Tiâ€6Alâ€4V Substrates. Journal of the American Ceramic<br>Society, 2000, 83, 989-991.                                                                                                           | 3.8  | 125       |
| 46 | Preparation of Porous Ca <sub>10</sub> (PO <sub>4</sub> ) <sub>6</sub> (OH) <sub>2</sub> and<br>β a <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub> Bioceramics. Journal of the American Ceramic Society,<br>2000, 83, 1581-1584.            | 3.8  | 66        |
| 47 | Hydrothermal synthesis of dy-doped BaTiO3 powders. Metallurgical and Materials Transactions B:<br>Process Metallurgy and Materials Processing Science, 1999, 30, 1089-1093.                                                               | 2.1  | 7         |
| 48 | Preparation of Lead Zirconate Titanate (Pb(Zr <sub>0.52</sub> Ti <sub>0.48</sub> )O <sub>3</sub> ) by<br>Homogeneous Precipitation and Calcination. Journal of the American Ceramic Society, 1999, 82,<br>1582-1584.                      | 3.8  | 19        |
| 49 | Synthesis of Calcium Hydroxyapatiteâ€Tricalcium Phosphate (HAâ€TCP) Composite Bioceramic Powders and<br>Their Sintering Behavior. Journal of the American Ceramic Society, 1998, 81, 2245-2252.                                           | 3.8  | 216       |
| 50 | Chemical Preparation of the Binary Compounds in the Calciaâ€Alumina System by Selfâ€Propagating<br>Combustion Synthesis. Journal of the American Ceramic Society, 1998, 81, 2853-2863.                                                    | 3.8  | 72        |
| 51 | Lowâ€Temperature Chemical Synthesis of Lanthanum Monoaluminate. Journal of the American Ceramic<br>Society, 1997, 80, 133-141.                                                                                                            | 3.8  | 66        |
| 52 | An investigation of the chemical synthesis and high-temperature sintering behaviour of calcium<br>hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics. Journal of Materials Science:<br>Materials in Medicine, 1997, 8, 91-96. | 3.6  | 142       |
| 53 | Preparation of Lead Zirconate by Homogeneous Precipitation and Calcination. Journal of the American Ceramic Society, 1997, 80, 2714-2716.                                                                                                 | 3.8  | 31        |
| 54 | Characterization of new solid solution phases in (Y,Ca)(Cr,Co)O <sub>3</sub> system. Powder Diffraction, 1995, 10, 40-43.                                                                                                                 | 0.2  | 2         |

A CUNEYT TAS

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Phase Relations in the System Ce2O3-Ce2Si2O7 in the Temperature Range 11500 to 1970oC in Reducing and Inert Atmospheres. Journal of the American Ceramic Society, 1994, 77, 2953-2960. | 3.8 | 37        |
| 56 | Phase Relations in the System Ce2O3-Al2O3 in Inert and Reducing Atmospheres. Journal of the American<br>Ceramic Society, 1994, 77, 2961-2967.                                          | 3.8 | 23        |
| 57 | Crystal Structures of the High-Temperature Forms of Ln2Si2O7 (Ln = La, Ce, Pr, Nd, Sm) Revisited.<br>Journal of the American Ceramic Society, 1994, 77, 2968-2970.                     | 3.8 | 25        |
| 58 | Phase Relations in the System Al2O3Ce2Si2O7 in the Temperature Range 900o to 1925oC in Inert<br>Atmosphere. Journal of the American Ceramic Society, 1993, 76, 1595-1601.              | 3.8 | 13        |
| 59 | Cerium Oxygen Apatite (Ce <sub>4.67</sub> [SiO <sub>4</sub> ] <sub>3</sub> O) X-Ray Diffraction Pattern<br>Revisited. Powder Diffraction, 1992, 7, 219-222.                            | 0.2 | 13        |
| 60 | Chemical Processing of Brushite: Its Conversion to Apatite or Ca2P2O7. Ceramic Engineering and Science Proceedings, 0, , 543-548.                                                      | 0.1 | 0         |
| 61 | Use of Vaterite and Calcite in Forming Calcium Phosphate Cement Scaffolds. , 0, , 135-150.                                                                                             |     | 5         |
| 62 | A Self-Setting, Monetite (CaHPO4) Cement for Skeletal Repair. Ceramic Engineering and Science<br>Proceedings, 0, , 61-69.                                                              | 0.1 | 6         |
| 63 | Preparation of Self-Setting Cement-Based Micro- and Macroporous Granules of Carbonated Apatitic<br>Calcium Phosphate. Ceramic Engineering and Science Proceedings, 0, , 49-60.         | 0.1 | 1         |