
Birgitte Holst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1164253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Beta-Hydroxybutyrate Suppresses Hepatic Production of the Ghrelin Receptor Antagonist LEAP2. Endocrinology, 2022, 163, .	1.4	10
2	LEAP2 reduces postprandial glucose excursions and ad libitum food intake in healthy men. Cell Reports Medicine, 2022, 3, 100582.	3.3	21
3	Identification and Metabolic Profiling of a Novel Human Gut-derived LEAP2 Fragment. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e966-e981.	1.8	22
4	The Physiological Roles and Clinical Relevance of Ghrelin. , 2021, , 1-10.		0
5	Ablation of <i>Nampt</i> in AgRP neurons leads to neurodegeneration and impairs fasting―and ghrelinâ€mediated food intake. FASEB Journal, 2021, 35, e21450.	0.2	2
6	The Zinc-Sensing Receptor GPR39 in Physiology and as a Pharmacological Target. International Journal of Molecular Sciences, 2021, 22, 3872.	1.8	21
7	Hypothalamic hormone-sensitive lipase regulates appetite and energy homeostasis. Molecular Metabolism, 2021, 47, 101174.	3.0	11
8	Anorexia and fat aversion induced by vertical sleeve gastrectomy is attenuated in neurotensin receptor 1 deficient mice. Endocrinology, 2021, 162, .	1.4	5
9	Selective release of gastrointestinal hormones induced by an orally active GPR39 agonist. Molecular Metabolism, 2021, 49, 101207.	3.0	9
10	Biased Ghrelin Receptor Signaling and the Dopaminergic System as Potential Targets for Metabolic and Psychological Symptoms of Anorexia Nervosa. Frontiers in Endocrinology, 2021, 12, 734547.	1.5	6
11	Ghrelin, Physiological Roles and Clinical Relevance of. , 2021, , 695-704.		0
12	Fasting―and ghrelinâ€induced food intake is regulated by NAMPT in the hypothalamus. Acta Physiologica, 2020, 228, e13437.	1.8	22
13	Transcriptomic analysis links diverse hypothalamic cell types to fibroblast growth factor 1-induced sustained diabetes remission. Nature Communications, 2020, 11, 4458.	5.8	34
14	Metabolic insights from a GHSR-A203E mutant mouse model. Molecular Metabolism, 2020, 39, 101004.	3.0	28
15	The Complex Signaling Pathways of the Ghrelin Receptor. Endocrinology, 2020, 161, .	1.4	34
16	The Lysine Demethylase KDM5B Regulates Islet Function and Glucose Homeostasis. Journal of Diabetes Research, 2019, 2019, 1-15.	1.0	15
17	RhoA in tyrosine hydroxylase neurones regulates food intake and body weight via altered sensitivity to peripheral hormones. Journal of Neuroendocrinology, 2019, 31, e12761.	1.2	10
18	Proteomics-Based Comparative Mapping of the Secretomes of Human Brown and White Adipocytes Reveals EPDR1 as a Novel Batokine. Cell Metabolism, 2019, 30, 963-975.e7.	7.2	109

BIRGITTE HOLST

#	Article	IF	CITATIONS
19	Long-Acting Neurotensin Synergizes With Liraglutide to Reverse Obesity Through a Melanocortin-Dependent Pathway. Diabetes, 2019, 68, 1329-1340.	0.3	33
20	Ghrelinâ€mediated improvements in the metabolic phenotype in the R6/2 mouse model of Huntington's disease. Journal of Neuroendocrinology, 2019, 31, e12699.	1.2	12
21	Impaired glucose metabolism and altered gut microbiome despite calorie restriction of ob/ob mice. Animal Microbiome, 2019, 1, 11.	1.5	15
22	ADAMTS9 Regulates Skeletal Muscle Insulin Sensitivity Through Extracellular Matrix Alterations. Diabetes, 2019, 68, 502-514.	0.3	20
23	Synthesis and <i>in Vitro</i> Evaluation of Stabilized and Selective Neuromedin U-1 Receptor Agonists. ACS Medicinal Chemistry Letters, 2018, 9, 496-501.	1.3	9
24	Hepatic NAD+ levels and NAMPT abundance are unaffected during prolonged high-fat diet consumption in C57BL/6JBomTac mice. Molecular and Cellular Endocrinology, 2018, 473, 245-256.	1.6	35
25	Development of potent and proteolytically stable human neuromedin U receptor agonists. European Journal of Medicinal Chemistry, 2018, 144, 887-897.	2.6	13
26	Translating biased signaling in the ghrelin receptor system into differential in vivo functions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10255-E10264.	3.3	37
27	An adult-based insulin resistance genetic risk score associates with insulin resistance, metabolic traits and altered fat distribution in Danish children and adolescents who are overweight or obese. Diabetologia, 2018, 61, 1769-1779.	2.9	11
28	Pannexin-2-deficiency sensitizes pancreatic β-cells to cytokine-induced apoptosis inÂvitro and impairs glucose tolerance inÂvivo. Molecular and Cellular Endocrinology, 2017, 448, 108-121.	1.6	10
29	Model-Based Discovery of Synthetic Agonists for the Zn ²⁺ -Sensing G-Protein-Coupled Receptor 39 (GPR39) Reveals Novel Biological Functions. Journal of Medicinal Chemistry, 2017, 60, 886-898.	2.9	29
30	Ghrelin-mediated inhibition of the TSH-stimulated function of differentiated human thyrocytes ex vivo. PLoS ONE, 2017, 12, e0184992.	1.1	12
31	Functional and genetic epidemiological characterisation of the <i>FFAR4</i> (<i>GPR120</i>) p.R270H variant in the Danish population. Journal of Medical Genetics, 2016, 53, 616-623.	1.5	20
32	Immune malfunction in the GPR39 zinc receptor of knockout mice: Its relationship to depressive disorder. Journal of Neuroimmunology, 2016, 291, 11-17.	1.1	12
33	Short-term effects of dietary advanced glycation end products in rats. British Journal of Nutrition, 2016, 115, 629-636.	1.2	26
34	Effects of Peripheral Neurotensin on Appetite Regulation and Its Role in Gastric Bypass Surgery. Endocrinology, 2016, 157, 3482-3492.	1.4	58
35	C4.4A gene ablation is compatible with normal epidermal development and causes modest overt phenotypes. Scientific Reports, 2016, 6, 25833.	1.6	10
36	GPR119, a Major Enteroendocrine Sensor of Dietary Triglyceride Metabolites Coacting in Synergy With FFA1 (GPR40). Endocrinology, 2016, 157, 4561-4569.	1.4	77

BIRGITTE HOLST

#	Article	IF	CITATIONS
37	FGF21 Mediates Endocrine Control of Simple Sugar Intake and Sweet Taste Preference by the Liver. Cell Metabolism, 2016, 23, 335-343.	7.2	270
38	Anxiolytic-Like Effects of Increased Ghrelin Receptor Signaling in the Amygdala. International Journal of Neuropsychopharmacology, 2016, 19, pyv123.	1.0	44
39	Neurotensin Is Coexpressed, Coreleased, and Acts Together With GLP-1 and PYY in Enteroendocrine Control of Metabolism. Endocrinology, 2016, 157, 176-194.	1.4	119
40	Synthesis and evaluation of novel lipidated neuromedin U analogs with increased stability and effects on food intake. Journal of Peptide Science, 2015, 21, 85-94.	0.8	28
41	Impaired oxidative capacity due to decreased CPT1b levels as a contributing factor to fat accumulation in obesity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R973-R982.	0.9	24
42	GPR40 (FFAR1) – Combined Gs and Gq signaling inÂvitro is associated with robust incretin secretagogue action exÂvivo and inÂvivo. Molecular Metabolism, 2015, 4, 3-14.	3.0	175
43	Bioorthogonal Labeling of Ghrelin Receptor to Facilitate Studies of Ligand-Dependent Conformational Dynamics. Chemistry and Biology, 2015, 22, 1431-1436.	6.2	17
44	Dietary Non-Esterified Oleic Acid Decreases the Jejunal Levels of Anorectic N-Acylethanolamines. PLoS ONE, 2014, 9, e100365.	1.1	15
45	The Melanocortin-4 Receptor Is Expressed in Enteroendocrine L Cells and Regulates the Release of Peptide YY and Glucagon-like Peptide 1 InÂVivo. Cell Metabolism, 2014, 20, 1018-1029.	7.2	139
46	PICK1 Deficiency Impairs Secretory Vesicle Biogenesis and Leads to Growth Retardation and Decreased Glucose Tolerance. PLoS Biology, 2013, 11, e1001542.	2.6	73
47	Modulation of Constitutive Activity and Signaling Bias of the Ghrelin Receptor by Conformational Constraint in the Second Extracellular Loop. Journal of Biological Chemistry, 2012, 287, 33488-33502.	1.6	33
48	Deficiency of the GPR39 receptor is associated with obesity and altered adipocyte metabolism. FASEB Journal, 2011, 25, 3803-3814.	0.2	45
49	Unique Interaction Pattern for a Functionally Biased Ghrelin Receptor Agonist. Journal of Biological Chemistry, 2011, 286, 20845-20860.	1.6	42
50	A Conserved Aromatic Lock for the Tryptophan Rotameric Switch in TM-VI of Seven-transmembrane Receptors. Journal of Biological Chemistry, 2010, 285, 3973-3985.	1.6	126
51	Modulation of the Constitutive Activity of the Ghrelin Receptor by Use of Pharmacological Tools and Mutagenesis. Methods in Enzymology, 2010, 484, 53-73.	0.4	17
52	Overlapping Binding Site for the Endogenous Agonist, Small-Molecule Agonists, and Ago-allosteric Modulators on the Ghrelin Receptor. Molecular Pharmacology, 2009, 75, 44-59.	1.0	66
53	In Vivo Characterization of High Basal Signaling from the Ghrelin Receptor. Endocrinology, 2009, 150, 4920-4930.	1.4	105
54	G Protein-Coupled Receptor 39 Deficiency Is Associated with Pancreatic Islet Dysfunction. Endocrinology, 2009, 150, 2577-2585.	1.4	82

BIRGITTE HOLST

#	Article	IF	CITATIONS
55	Identification of an Efficacy Switch Region in the Ghrelin Receptor Responsible for Interchange between Agonism and Inverse Agonism. Journal of Biological Chemistry, 2007, 282, 15799-15811.	1.6	73
56	GPR39 Signaling Is Stimulated by Zinc Ions But Not by Obestatin. Endocrinology, 2007, 148, 13-20.	1.4	371
57	Ghrelin Receptor Inverse Agonists: Identification of an Active Peptide Core and Its Interaction Epitopes on the Receptor. Molecular Pharmacology, 2006, 70, 936-946.	1.0	82
58	Metal Ion Site Engineering Indicates a Global Toggle Switch Model for Seven-transmembrane Receptor Activation. Journal of Biological Chemistry, 2006, 281, 17337-17346.	1.6	88
59	Chrelin receptor mutations too little height and too much hunger. Journal of Clinical Investigation, 2006, 116, 637-641.	3.9	92
60	Common Structural Basis for Constitutive Activity of the Ghrelin Receptor Family. Journal of Biological Chemistry, 2004, 279, 53806-53817.	1.6	303
61	Constitutive ghrelin receptor activity as a signaling set-point in appetite regulation. Trends in Pharmacological Sciences, 2004, 25, 113-117.	4.0	159
62	Molecular Mechanism of Agonism and Inverse Agonism in the Melanocortin Receptors. Annals of the New York Academy of Sciences, 2003, 994, 1-11.	1.8	64
63	High Constitutive Signaling of the Chrelin Receptor—Identification of a Potent Inverse Agonist. Molecular Endocrinology, 2003, 17, 2201-2210.	3.7	455
64	Metal Ion-mediated Agonism and Agonist Enhancement in Melanocortin MC1 and MC4 Receptors. Journal of Biological Chemistry, 2002, 277, 47662-47670.	1.6	98