Galina D Mironova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1164249/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional Distinctions between the Mitochondrial ATP-dependent K+ Channel (mitoKATP) and Its Inward Rectifier Subunit (mitoKIR). Journal of Biological Chemistry, 2004, 279, 32562-32568.	3.4	91
2	A permeability transition in liposomes induced by the formation of Ca2+/palmitic acid complexes. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1609, 153-160.	2.6	58
3	Palmitic and stearic acids bind Ca2+ with high affinity and form nonspecific channels in black-lipid membranes. Possible relation to Ca2+-activated mitochondrial pores. Journal of Bioenergetics and Biomembranes, 2001, 33, 319-331.	2.3	53
4	The cardioprotective effect of uridine and uridine-5′-monophosphate: The role of the mitochondrial ATP-dependent potassium channel. Experimental Gerontology, 2006, 41, 697-703.	2.8	48
5	Reconstitution of the mitochondrial ATP-dependent potassium channel into bilayer lipid membrane. Journal of Bioenergetics and Biomembranes, 1999, 31, 159-163.	2.3	41
6	Formation of Palmitic Acid/Ca2+Complexes in the Mitochondrial Membrane: A Possible Role in the Cyclosporin-Insensitive Permeability Transition. Journal of Bioenergetics and Biomembranes, 2004, 36, 171-178.	2.3	38
7	Purification of the channel component of the mitochondrial calcium uniporter and its reconstitution into planar lipid bilayers. Journal of Bioenergetics and Biomembranes, 1994, 26, 231-238.	2.3	36
8	Ca2+-dependent permeabilization of mitochondria and liposomes by palmitic and oleic acids: A comparative study. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2600-2606.	2.6	34
9	Isolation and properties of Ca2+-transporting glycoprotein and peptide from beef heart mitochondria. Journal of Bioenergetics and Biomembranes, 1982, 14, 213-225.	2.3	33
10	Inhibition of the mitochondrial calcium uniporter by antibodies against a 40-kDa glycorproteinT. Journal of Bioenergetics and Biomembranes, 1993, 25, 307-312.	2.3	33
11	Functioning of the mitochondrial ATP-dependent potassium channel in rats varying in their resistance to hypoxia. Involvement of the channel in the process of animal's adaptation to hypoxia. Journal of Bioenergetics and Biomembranes, 2010, 42, 473-481.	2.3	33
12	On the mechanism of palmitic acid-induced apoptosis: the role of a pore induced by palmitic acid and Ca2+ in mitochondria. Journal of Bioenergetics and Biomembranes, 2006, 38, 113-120.	2.3	31
13	Ca2+-Induced Phase Separation in the Membrane of Palmitate-Containing Liposomes and Its Possible Relation to Membrane Permeabilization. Journal of Membrane Biology, 2007, 215, 57-68.	2.1	27
14	Uridine treatment prevents myocardial injury in rat models of acute ischemia and ischemia/reperfusion by activating the mitochondrial ATP-dependent potassium channel. Scientific Reports, 2021, 11, 16999.	3.3	25
15	The role of mitochondrial KATP channel in anti-inflammatory effects of uridine in endotoxemic mice. Archives of Biochemistry and Biophysics, 2018, 654, 70-76.	3.0	23
16	Physiological aspects of the mitochondrial cyclosporin A-insensitive palmitate/Ca2+-induced pore: tissue specificity, age profile and dependence on the animal's adaptation to hypoxia. Journal of Bioenergetics and Biomembranes, 2009, 41, 395-401.	2.3	22
17	Mitochondrial Ca2+ cycle mediated by the palmitate-activated cyclosporin a-insensitive pore. Journal of Bioenergetics and Biomembranes, 2007, 39, 167-174.	2.3	18
18	Effect of hypoxia on mitochondrial enzymes and ultrastructure in the brain cortex of rats with different tolerance to oxygen shortage. Journal of Bioenergetics and Biomembranes, 2019, 51, 329-340.	2.3	16

GALINA D MIRONOVA

#	Article	IF	CITATIONS
19	Energy metabolism and oxidative status of rat liver mitochondria in conditions of experimentally induced hyperthyroidism. Mitochondrion, 2020, 52, 190-196.	3.4	16
20	Mitochondrial Cyclosporine A-Independent Palmitate/Ca2+-Induced Permeability Transition Pore (PA-mPT Pore) and Its Role in Mitochondrial Function and Protection against Calcium Overload and Glutamate Toxicity. Cells, 2021, 10, 125.	4.1	15
21	Structural and dynamic changes in mitochondria of rat myocardium under acute hypoxic hypoxia: Role of mitochondrial ATP-dependent potassium channel. Biochemistry (Moscow), 2015, 80, 994-1000.	1.5	13
22	lon-transporting properties and ATPase activity of (Na+ + K+)-ATPase large subunit incorporated into bilayer lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 1986, 861, 224-236.	2.6	12
23	Palmitic Acid Induces the Opening of a Ca2+-Dependent Pore in the Plasma Membrane of Red Blood Cells: The Possible Role of the Pore in Erythrocyte Lysis. Journal of Membrane Biology, 2010, 237, 13-19.	2.1	12
24	Involvement of palmitate/Ca2+(Sr2+)-induced pore in the cycling of ions across the mitochondrial membrane. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 488-495.	2.6	11
25	Energetic, oxidative and ionic exchange in rat brain and liver mitochondria at experimental audiogenic epilepsy (Krushinsky–Molodkina model). Journal of Bioenergetics and Biomembranes, 2017, 49, 149-158.	2.3	11
26	Oscillating Ca2+-induced channel activity obtained in BLM with a mitochondrial membrane component. Journal of Bioenergetics and Biomembranes, 1997, 29, 561-569.	2.3	10
27	Effect of surface-potential modulators on the opening of lipid pores in liposomal and mitochondrial inner membranes induced by palmitate and calcium ions. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2200-2205.	2.6	10
28	Uridine as a protector against hypoxia-induced lung injury. Scientific Reports, 2019, 9, 9418.	3.3	10
29	Signaling Role of Mitochondrial Enzymes and Ultrastructure in the Formation of Molecular Mechanisms of Adaptation to Hypoxia. International Journal of Molecular Sciences, 2021, 22, 8636.	4.1	9
30	Intranasal administration of mitochondria improves spatial memory in olfactory bulbectomized mice. Experimental Biology and Medicine, 2022, 247, 416-425.	2.4	9
31	Formation of lamellar bodies in rat liver mitochondria in hyperthyroidism. Journal of Bioenergetics and Biomembranes, 2018, 50, 289-295.	2.3	8
32	Dynamic Restructuring of the Myocardial Mitochondria in Response to Uridine Modulation of the Activity of Mitochondrial ATP-Dependent Potassium Channel under Conditions of Acute Hypoxic Hypoxia. Bulletin of Experimental Biology and Medicine, 2019, 166, 806-810.	0.8	6
33	Mitochondrial lipid pore in the mechanism of glutamate-induced calcium deregulation of brain neurons. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2012, 6, 45-55.	0.6	4
34	Ultrastructural localization of the ROMK potassium channel in rat liver and heart. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2016, 10, 195-198.	0.6	3
35	The Short-Term Opening of Cyclosporin A-Independent Palmitate/Sr2+-Induced Pore Can Underlie Ion Efflux in the Oscillatory Mode of Functioning of Rat Liver Mitochondria. Membranes, 2022, 12, 667.	3.0	1
36	<title>Solubilization of membrane proteins in ethanol: new perspective method for isolation of ion channels</title> ., 1997,,.		0

3

#	ARTICLE	IF	CITATIONS
37	Detection of KIR6 family protein in rat heart and liver mitochondria by immunoelectron microscopy. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2014, 8, 121-124.	0.6	0
38	The role of the ATP-sensitive potassium channel in the activation of the K+ cycle in rat liver mitochondria. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2014, 8, 178-182.	0.6	0
39	Effects of manganese on potassium outflow from erythrocytes and on respiration of rat liver mitochondria. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2017, 11, 77-81.	0.6	0