Shaofang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11641874/publications.pdf Version: 2024-02-01

SHAOFANG W/U

#	Article	IF	CITATIONS
1	PARP-mediated PARylation of MGMT is critical to promote repair of temozolomide-induced O6-methylguanine DNA damage in glioblastoma. Neuro-Oncology, 2021, 23, 920-931.	1.2	58
2	Autoinhibition of MDMX by intramolecular p53 mimicry. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4624-4629.	7.1	43
3	Casein Kinase 1 <i>α</i> Regulates an MDMX Intramolecular Interaction To Stimulate p53 Binding. Molecular and Cellular Biology, 2012, 32, 4821-4832.	2.3	42
4	Integrated analysis of telomerase enzymatic activity unravels an association with cancer stemness and proliferation. Nature Communications, 2021, 12, 139.	12.8	39
5	Secondary interaction between MDMX and p53 core domain inhibits p53 DNA binding. Proceedings of the United States of America, 2016, 113, E2558-63.	7.1	38
6	<i>EGFR</i> Amplification Induces Increased DNA Damage Response and Renders Selective Sensitivity to Talazoparib (PARP Inhibitor) in Glioblastoma. Clinical Cancer Research, 2020, 26, 1395-1407.	7.0	26
7	MSK1-Mediated β-Catenin Phosphorylation Confers Resistance to PI3K/mTOR Inhibitors in Glioblastoma. Molecular Cancer Therapeutics, 2016, 15, 1656-1668.	4.1	25
8	Activation of WEE1 confers resistance to PI3K inhibition in glioblastoma. Neuro-Oncology, 2018, 20, 78-91.	1.2	24
9	The polo-like kinase 1 inhibitor volasertib synergistically increases radiation efficacy in glioma stem cells. Oncotarget, 2018, 9, 10497-10509.	1.8	18
10	Tie2–FGFR1 Interaction Induces Adaptive PI3K Inhibitor Resistance by Upregulating Aurora A/PLK1/CDK1 Signaling in Glioblastoma. Cancer Research, 2019, 79, 5088-5101.	0.9	17
11	Preclinical therapeutic efficacy of a novel blood-brain barrier-penetrant dual PI3K/mTOR inhibitor with preferential response in PI3K/PTEN mutant glioma. Oncotarget, 2017, 8, 21741-21753.	1.8	16
12	APOBEC3G acts as a therapeutic target in mesenchymal gliomas by sensitizing cells to radiation-induced cell death. Oncotarget, 2017, 8, 54285-54296.	1.8	15
13	Wild-type defined gamma-secretase inhibitor sensitivity and synergistic activity with doxorubicin in GSCs. American Journal of Cancer Research, 2019, 9, 1734-1745.	1.4	3
14	BRCA1 identified as a modulator of temozolomide resistance in P53 wild-type GBM using a high-throughput shRNA-based synthetic lethality screening. American Journal of Cancer Research, 2019, 9, 2428-2441.	1.4	1
15	DDIS-03. EGFR AMPLIFICATION INDUCED INCREASED DNA DAMAGE RESPONSE AND PREDICTED SELECTIVE SENSITIVITY TO TALAZOPARIB (PARP INHIBITOR) IN GLIOBLASTOMA STEM-LIKE CELLS. Neuro-Oncology, 2018, 20, vi69-vi69.	1.2	0
16	EXTH-11. GLIOBLASTOMA STEM CELL GROWTH DEPENDENCE ON NUTRIENTS: MORE THAN BASAL METABOLIC ACTIVITIES. Neuro-Oncology, 2018, 20, vi87-vi87.	1.2	0