## Andrey Ganopolski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11641652/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Climatic response to anthropogenic sulphate aerosols versus well-mixed greenhouse gases from 1850 to 2000 AD in CLIMBER-2. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 82.                 | 1.6  | 11        |
| 2  | Climate effects on archaic human habitats and species successions. Nature, 2022, 604, 495-501.                                                                                                                | 27.8 | 55        |
| 3  | Past abrupt changes, tipping points and cascading impacts in the Earth system. Nature Geoscience, 2021, 14, 550-558.                                                                                          | 12.9 | 62        |
| 4  | Simulation of the future sea level contribution of Greenland with a new glacial system model.<br>Cryosphere, 2018, 12, 3097-3121.                                                                             | 3.9  | 39        |
| 5  | MIS-11 duration key to disappearance of the Greenland ice sheet. Nature Communications, 2017, 8, 16008.                                                                                                       | 12.8 | 19        |
| 6  | Simulation of climate, ice sheets and CO <sub>2</sub> evolution during the<br>last four glacial cycles with an Earth system model of intermediate complexity. Climate of the Past,<br>2017, 13, 1695-1716.    | 3.4  | 74        |
| 7  | PALADYN v1.0, a comprehensive land surface–vegetation–carbon cycle model of intermediate complexity. Geoscientific Model Development, 2016, 9, 3817-3857.                                                     | 3.6  | 9         |
| 8  | Black Sea temperature response to glacial millennialâ€scale climate variability. Geophysical Research<br>Letters, 2015, 42, 8147-8154.                                                                        | 4.0  | 40        |
| 9  | The role of CO2 decline for the onset of Northern Hemisphere glaciation. Quaternary Science Reviews, 2015, 119, 22-34.                                                                                        | 3.0  | 42        |
| 10 | Time-scale and state dependence of the carbon-cycle feedback to climate. Climate Dynamics, 2014, 42, 1699-1713.                                                                                               | 3.8  | 18        |
| 11 | Multistability and critical thresholds of the Greenland ice sheet. Nature Climate Change, 2012, 2, 429-432.                                                                                                   | 18.8 | 212       |
| 12 | Potential climatic transitions with profound impact on Europe. Climatic Change, 2012, 110, 845-878.                                                                                                           | 3.6  | 67        |
| 13 | Vegetation and climate history in the Laptev Sea region (Arctic Siberia) during Late Quaternary inferred from pollen records. Quaternary Science Reviews, 2011, 30, 2182-2199.                                | 3.0  | 128       |
| 14 | Aeolian dust modeling over the past four glacial cycles with CLIMBER-2. Global and Planetary Change, 2010, 74, 49-60.                                                                                         | 3.5  | 27        |
| 15 | Wave-induced upper-ocean mixing in a climate model of intermediate complexity. Ocean Modelling,<br>2009, 29, 189-197.                                                                                         | 2.4  | 67        |
| 16 | On the nature of lead–lag relationships during glacial–interglacial climate transitions. Quaternary<br>Science Reviews, 2009, 28, 3361-3378.                                                                  | 3.0  | 65        |
| 17 | Comment on "Aerosol radiative forcing and climate sensitivity deduced from the Last Glacial<br>Maximum to Holocene transition―by Petr Chylek and Ulrike Lohmann. Geophysical Research Letters,<br>2008, 35, . | 4.0  | 12        |
| 18 | 39. Modelling the end of an interglacial (MIS 1, 5, 7, 9, 11). Developments in Quaternary Sciences, 2007, 7, 583-593.                                                                                         | 0.1  | 4         |

ANDREY GANOPOLSKI

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Dominant Northern Hemisphere climate control over millennial-scale glacial sea-level variability.<br>Quaternary Science Reviews, 2007, 26, 312-321.                                                 | 3.0  | 165       |
| 20 | Response of East Asian climate to Dansgaard/Oeschger and Heinrich events in a coupled model of intermediate complexity. Journal of Geophysical Research, 2007, 112, .                               | 3.3  | 35        |
| 21 | Lowering of glacial atmospheric CO <sub>2</sub> in response to changes in oceanic circulation and marine biogeochemistry. Paleoceanography, 2007, 22, .                                             | 3.0  | 180       |
| 22 | How cold was the Last Glacial Maximum?. Geophysical Research Letters, 2006, 33, .                                                                                                                   | 4.0  | 102       |
| 23 | Climate sensitivity estimated from ensemble simulations of glacial climate. Climate Dynamics, 2006, 27, 149-163.                                                                                    | 3.8  | 154       |
| 24 | Sensitivity of the last glacial inception to initial and surface conditions. Climate Dynamics, 2006, 27, 333-344.                                                                                   | 3.8  | 32        |
| 25 | North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature, 2005, 433, 821-825.                                                                                    | 27.8 | 336       |
| 26 | Possible solar origin of the 1,470-year glacial climate cycle demonstrated in a coupled model. Nature, 2005, 438, 208-211.                                                                          | 27.8 | 231       |
| 27 | Transient simulation of the last glacial inception. Part I: glacial inception as a bifurcation in the climate system. Climate Dynamics, 2005, 24, 545-561.                                          | 3.8  | 121       |
| 28 | Transient simulation of the last glacial inception. Part II: sensitivity and feedback analysis. Climate Dynamics, 2005, 24, 563-576.                                                                | 3.8  | 62        |
| 29 | The earth system model of intermediate complexity CLIMBER-3α. Part I: description and performance for present-day conditions. Climate Dynamics, 2005, 25, 237-263.                                  | 3.8  | 93        |
| 30 | Did Humankind Prevent a Holocene Glaciation?. Climatic Change, 2005, 69, 409-417.                                                                                                                   | 3.6  | 33        |
| 31 | Impacts of future land cover changes on atmospheric CO2and climate. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.                                                                                | 4.9  | 148       |
| 32 | A movable trigger: Fossil fuel CO2and the onset of the next glaciation. Geochemistry, Geophysics,<br>Geosystems, 2005, 6, n/a-n/a.                                                                  | 2.5  | 77        |
| 33 | Impacts of snow and glaciers over Tibetan Plateau on Holocene climate change: Sensitivity<br>experiments with a coupled model of intermediate complexity. Geophysical Research Letters, 2005, 32, . | 4.0  | 32        |
| 34 | Thermohaline circulation hysteresis: A model intercomparison. Geophysical Research Letters, 2005, 32,                                                                                               | 4.0  | 344       |
| 35 | Multistability and hysteresis in the climate-cryosphere system under orbital forcing. Geophysical Research Letters, 2005, 32,                                                                       | 4.0  | 51        |
| 36 | Climate Change in Northern Africa: The Past is Not the Future. Climatic Change, 2003, 57, 99-118.                                                                                                   | 3.6  | 109       |

ANDREY GANOPOLSKI

| #  | Article                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Glacial integrative modelling. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2003, 361, 1871-1884.                    | 3.4  | 17        |
| 38 | Abrupt Glacial Climate Changes due to Stochastic Resonance. Physical Review Letters, 2002, 88, 038501.                                                         | 7.8  | 257       |
| 39 | Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model.<br>Geophysical Research Letters, 2002, 29, 69-1-69-4. | 4.0  | 122       |
| 40 | Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model. Global Biogeochemical Cycles, 2002, 16, 86-1-86-20.      | 4.9  | 302       |
| 41 | Ocean biology could control atmospheric δ13C during glacial-interglacial cycle. Geochemistry,<br>Geophysics, Geosystems, 2002, 3, 1-15.                        | 2.5  | 31        |
| 42 | Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophysical<br>Research Letters, 2001, 28, 1011-1014.                         | 4.0  | 279       |
| 43 | Rapid changes of glacial climate simulated in a coupled climate model. Nature, 2001, 409, 153-158.                                                             | 27.8 | 905       |
| 44 | Modelling climate response to historical land cover change. Global Ecology and Biogeography, 1999,<br>8, 509-517.                                              | 5.8  | 153       |
| 45 | Title is missing!. Environmental Modeling and Assessment, 1999, 4, 209-216.                                                                                    | 2.2  | 11        |
| 46 | Long-Term Global Warming Scenarios Computed with an Efficient Coupled Climate Model. Climatic Change, 1999, 43, 353-367.                                       | 3.6  | 267       |
| 47 | Simulation of an abrupt change in Saharan vegetation in the Mid-Holocene. Geophysical Research<br>Letters, 1999, 26, 2037-2040.                                | 4.0  | 510       |
| 48 | Simulation of modern and glacial climates with a coupled global model of intermediate complexity.<br>Nature, 1998, 391, 351-356.                               | 27.8 | 403       |
| 49 | Modelling global terrestrial vegetation–climate interaction. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 53-63          | 4.0  | 103       |
| 50 | On the stability of the atmosphere-vegetation system in the Sahara/Sahel region. Journal of Geophysical Research, 1998, 103, 31613-31624.                      | 3.3  | 225       |