Neha Basotra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11640292/publications.pdf

Version: 2024-02-01

1307594 1372567 12 319 7 10 citations g-index h-index papers 12 12 12 440 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Thermostable xylanases from thermophilic fungi and bacteria: Current perspective. Bioresource Technology, 2019, 277, 195-203.	9.6	109
2	Mycothermus thermophilus (Syn. Scytalidium thermophilum): Repertoire of a diverse array of efficient cellulases and hemicellulases in the secretome revealed. Bioresource Technology, 2016, 222, 413-421.	9.6	63
3	Malbranchea cinnamomea: A thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes. Bioresource Technology, 2016, 200, 55-63.	9.6	30
4	Characterization of a novel Lytic Polysaccharide Monooxygenase from Malbranchea cinnamomea exhibiting dual catalytic behavior. Carbohydrate Research, 2019, 478, 46-53.	2.3	29
5	Producing methane, methanol and electricity from organic waste of fermentation reaction using novel microbes. Bioresource Technology, 2018, 258, 270-278.	9.6	28
6	Expression of catalytically efficient xylanases from thermophilic fungus Malbranchea cinnamomea for synergistically enhancing hydrolysis of lignocellulosics. International Journal of Biological Macromolecules, 2018, 108, 185-192.	7. 5	27
7	Discovery and Expression of Thermostable LPMOs from Thermophilic Fungi for Producing Efficient Lignocellulolytic Enzyme Cocktails. Applied Biochemistry and Biotechnology, 2020, 191, 463-481.	2.9	17
8	Exoproteome profile reveals thermophilic fungus Crassicarpon thermophilum (strain 6GKB; syn.) Tj ETQq0 0 0 rg saccharification of bagasse. Biomass and Bioenergy, 2020, 132, 105438.	BT /Overlo 5.7	ck 10 Tf 50 40 7
9	Combination of system biology and classical approaches for developing biorefinery relevant lignocellulolytic Rasamsonia emersonii strain. Bioresource Technology, 2022, 351, 127039.	9.6	5
10	Developing and evaluating lignocellulolytic hyper producing deregulated strains of Mycothermus thermophilus for hydrolysis of lignocellulosics. Biomass Conversion and Biorefinery, 2023, 13, 5059-5071.	4.6	3
11	Thermophilic Fungal Lignocellulolytic Enzymes inÂBiorefineries. , 2021, , 15-43.		1
12	Synthetic biology and the regulatory roadmap for the commercialization of designer microbes. , 2022, , 449-475.		0