Brian A Nault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11639435/publications.pdf

Version: 2024-02-01

82 3,454 23 56
papers citations h-index g-index

82 82 82 3667
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science, 2013, 339, 1608-1611.	12.6	1,767
2	Onion Thrips (Thysanoptera: Thripidae): A Global Pest of Increasing Concern in Onion. Journal of Economic Entomology, 2011, 104, 1-13.	1.8	128
3	Performance of Apis mellifera, Bombus impatiens, and Peponapis pruinosa (Hymenoptera: Apidae) as Pollinators of Pumpkin. Journal of Economic Entomology, 2011, 104, 1153-1161.	1.8	96
4	Evaluating Trap Crops for Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae). Journal of Economic Entomology, 2004, 97, 1365-1372.	1.8	93
5	Neonicotinoid seed treatments for managing potato leafhopper infestations in snap bean. Crop Protection, 2004, 23, 147-154.	2.1	92
6	Impact of Insecticide Efficacy on Developing Action Thresholds for Pest Management: A Case Study of Onion Thrips (Thysanoptera: Thripidae) on Onion. Journal of Economic Entomology, 2010, 103, 1315-1326.	1.8	64
7	Temperature and Precipitation Affect Seasonal Patterns of Dispersing Tobacco Thrips, <i>Frankliniella fusca</i> , and Onion Thrips, <i>Thrips tabaci</i> (Thysanoptera: Thripidae) Caught on Sticky Traps. Environmental Entomology, 2008, 37, 79-86.	1.4	62
8	Evaluation of Onion Cultivars for Resistance to Onion Thrips (Thysanoptera: Thripidae) and Iris Yellow Spot Virus. Journal of Economic Entomology, 2010, 103, 925-937.	1.8	59
9	Reproductive Modes in Onion Thrips (Thysanoptera: Thripidae) Populations from New York Onion Fields. Environmental Entomology, 2006, 35, 1264-1271.	1.4	53
10	Using Yellow Rocket as a Trap Crop for Diamondback Moth (Lepidoptera: Plutellidae). Journal of Economic Entomology, 2005, 98, 884-890.	1.8	50
11	Pollination Services Provided by Bees in Pumpkin Fields Supplemented with Either Apis mellifera or Bombus impatiens or Not Supplemented. PLoS ONE, 2013, 8, e69819.	2.5	43
12	Performance of novel insecticide seed treatments for managing onion maggot (Diptera: Anthomyiidae) in onion fields. Crop Protection, 2006, 25, 58-65.	2.1	40
13	Pollen defenses negatively impact foraging and fitness in a generalist bee (Bombus impatiens: Apidae). Scientific Reports, 2020, 10, 3112.	3.3	39
14	Temporal Dynamics of Iris Yellow Spot Virus and Its Vector, <i>Thrips tabaci</i> (Thysanoptera:) Tj ETQq0 0 0 rgBT	/Qverlock	10 Tf 50 222
15	Landscape diversity moderates the effects of bee visitation frequency to flowers on crop production. Journal of Applied Ecology, 2014, 51, 1347-1356.	4.0	37
16	Manipulating the Attractiveness and Suitability of Hosts for Diamondback Moth (Lepidoptera:) Tj ETQq0 0 0 rgBT	/Qverlock	10 Tf 50 142
17	Seasonal and Spatial Dynamics of Alate Aphid Dispersal in Snap Bean Fields in Proximity to Alfalfa and Implications for Virus Management. Environmental Entomology, 2004, 33, 1593-1601.	1.4	34
18	Dynamics of diamondback moth oviposition in the presence of a highly preferred non-suitable host. Entomologia Experimentalis Et Applicata, 2006, 120, 23-31.	1.4	30

#	Article	IF	CITATIONS
19	Major insect pests and economics of fresh-market tomato in eastern Virginia. Crop Protection, 2002, 21, 359-366.	2.1	29
20	Influence of Honey Bee, <i>Apis mellifera </i> , Hives and Field Size on Foraging Activity of Native Bee Species in Pumpkin Fields. Environmental Entomology, 2011, 40, 1144-1158.	1.4	28
21	Contrasting effects of landscape composition on crop yield mediated by specialist herbivores. Ecological Applications, 2018, 28, 842-853.	3.8	27
22	Incidence, Spatial Patterns, and Associations Among Viruses in Snap Bean and Alfalfa in New York. Plant Disease, 2006, 90, 203-210.	1.4	26
23	Seasonal patterns of adult thrips dispersal and implications for management in eastern Virginia tomato fields. Crop Protection, 2003, 22, 505-512.	2.1	25
24	Characterization of Resistance, Evaluation of the Attractiveness of Plant Odors, and Effect of Leaf Color on Different Onion Cultivars to Onion Thrips (Thysanoptera: Thripidae). Journal of Economic Entomology, 2012, 105, 632-641.	1.8	25
25	The influence of temperature and precipitation on spring dispersal of <i>Frankliniella fusca</i> changes as the season progresses. Entomologia Experimentalis Et Applicata, 2010, 134, 260-271.	1.4	22
26	Grower adoption of insecticide resistance management practices increase with extensionâ€based program. Pest Management Science, 2019, 75, 515-526.	3.4	22
27	Timing insecticide applications for managing European corn borer (Lepidoptera: Pyralidae) infestations in potato. Crop Protection, 1996, 15, 465-471.	2.1	21
28	Limitations of Using Regression and Mean Separation Analyses for Describing the Response of Crop Yield to Defoliation: A Case Study of the Colorado Potato Beetle (Coleoptera: Chrysomelidae) on Potato. Journal of Economic Entomology, 1998, 91, 7-20.	1.8	21
29	Anthranilic Diamide Insecticides Delivered via Multiple Approaches to Control Vegetable Pests: A Case Study in Snap Bean. Journal of Economic Entomology, 2016, 109, 2479-2488.	1.8	21
30	Sequential Sampling Plans for Use in Timing Insecticide Applications for Control of European Corn Borer (Lepidoptera: Pyralidae) in Potato. Journal of Economic Entomology, 1996, 89, 1468-1476.	1.8	20
31	Seasonal Changes in Thrips tabaci Population Structure in Two Cultivated Hosts. PLoS ONE, 2014, 9, e101791.	2.5	20
32	Restricted Gene Flow among Lineages of Thrips tabaci Supports Genetic Divergence Among Cryptic Species Groups. PLoS ONE, 2016, 11, e0163882.	2.5	20
33	Sources of <i>Iris yellow spot virus</i> in New York. Plant Disease, 2011, 95, 735-743.	1.4	19
34	Consequences of coâ€applying insecticides and fungicides for managing <i>Thrips tabaci</i> (Thysanoptera: Thripidae) on onion. Pest Management Science, 2013, 69, 841-849.	3.4	19
35	Impact of a glossy collard trap crop on diamondback moth adult movement, oviposition, and larval survival. Entomologia Experimentalis Et Applicata, 2005, 117, 71-81.	1.4	17
36	Spatial and Temporal Potato Intensification Drives Insecticide Resistance in the Specialist Herbivore, Leptinotarsa decemlineata. PLoS ONE, 2015, 10, e0127576.	2.5	16

#	Article	IF	Citations
37	Onion Maggot (Diptera: Anthomyiidae) Resistance to Chlorpyrifos in New York Onion Fields. Journal of Economic Entomology, 2006, 99, 1375-1380.	1.8	15
38	Delaying Onion Planting to Control Onion Maggot (Diptera: Anthomyiidae): Efficacy and Underlying Mechanisms. Journal of Economic Entomology, 2011, 104, 1622-1632.	1.8	15
39	Evaluating an Action Threshold-Based Insecticide Program on Onion Cultivars Varying in Resistance to Onion Thrips (Thysanoptera: Thripidae). Journal of Economic Entomology, 2016, 109, 1772-1778.	1.8	15
40	Evaluation of Colorado Potato Beetle (Coleoptera: Chrysomelidae) Defoliation with Concomitant European Corn Borer (Lepidoptera: Pyralidae) Damage on Potato Yield. Journal of Economic Entomology, 1996, 89, 475-480.	1.8	13
41	Efficacy and economics of fresh-market Bt transgenic sweet corn in Virginia. Crop Protection, 2005, 24, 57-64.	2.1	12
42	Evaluation of action threshold-based insecticide spray programs for tomato fruitworm management in fresh-market tomatoes in Virginia. Crop Protection, 2006, 25, 604-612.	2.1	12
43	Relationships between insect predator populations and their prey, Thrips tabaci, in onion fields grown in large-scale and small-scale cropping systems. BioControl, 2014, 59, 739-748.	2.0	12
44	Monitoring Onion Thrips (Thysanoptera: Thripidae) Susceptibility to Spinetoram in New York Onion Fields. Journal of Economic Entomology, 2019, 112, 1493-1497.	1.8	12
45	Abundance of weed hosts as potential sources of onion and potato viruses in western New York. Crop Protection, 2012, 37, 91-96.	2.1	11
46	Reproductive Modes in Onion Thrips (Thysanoptera: Thripidae) Populations from New York Onion Fields. Environmental Entomology, 2006, 35, 1264-1271.	1.4	11
47	Evaluation of diamide insecticides co-applied with other agrochemicals at various times to manage <i>Ostrinia nubilalis</i> in processing snap bean. Pest Management Science, 2015, 71, 1649-1656.	3.4	10
48	Location and abundance of adult Colorado potato beetles (Coleoptera: Chrysomelidae) following potato harvest. Crop Protection, 1997, 16, 511-518.	2.1	9
49	Modeling Temporal Trends in Aphid Vector Dispersal and Cucumber Mosaic Virus Epidemics in Snap Bean. Environmental Entomology, 2009, 38, 1347-1359.	1.4	8
50	Evaluating combinations of bioinsecticides and adjuvants for managing Thrips tabaci (thysanoptera:) Tj ETQq0 0) 0 rgBT /Ov	verlock 10 Tf
51	Survival and fecundity of Bt-susceptible Colorado potato beetle adults after consumption of transgenic potato containing Bacillus thuringiensis subsp. tenebrionis Cry3A toxin. Entomologia Experimentalis Et Applicata, 2001, 101, 265-272.	1.4	7
52	Crop spatiotemporal dominance is a better predictor of pest and predator abundance than traditional partial approaches. Agriculture, Ecosystems and Environment, 2018, 265, 331-339.	5.3	7
53	Importance of Transplanted Onions Contributing to Late-Season <i>Iris yellow spot virus</i> Epidemics in New York. Plant Disease, 2018, 102, 1264-1272.	1.4	7

Attract and kill: spinosad containing spheres to control onion maggot ($\langle scp \rangle \langle i \rangle Delia$) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td (anticolor) and kill: spinosad containing spheres to control onion maggot ($\langle scp \rangle \langle i \rangle Delia$) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td (anticolor) and kill: spinosad containing spheres to control onion maggot ($\langle scp \rangle \langle i \rangle Delia$) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td (anticolor) and kill: spinosad containing spheres to control onion maggot ($\langle scp \rangle \langle i \rangle Delia$) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td (anticolor) and kill: spinosad containing spheres to control onion maggot ($\langle scp \rangle \langle i \rangle Delia$) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td (anticolor) and kill: spinosad containing spheres to control onion maggot ($\langle scp \rangle \langle i \rangle Delia$) Tj ETQq0 0 0 rgBT /Overlock 3.4 Tf 50 62 Td (anticolor) and kill: spinosad containing spheres to control onion maggot ($\langle scp \rangle \langle i \rangle Delia$) Tj ETQq0 0 0 rgBT /Overlock 3.4 Tf 50 62 Td (anticolor) and kill: spinosad containing spinosad containin

4

54

#	Article	IF	CITATIONS
55	Influence of European Corn Borer (Lepidoptera: Pyralidae) Damage to Potato and Foliage Availability on Overwinter Survival of First-Generation Colorado Potato Beetle Adults (Coleoptera:) Tj ETQq1 1 0.784314 rgBT	µ⊙ verlock	4 0 Tf 50 7
56	Influence of Foliar-Applied Bacillus thuringiensis subsp. tenebrionis and an Early Potato Harvest on Abundance and Overwinter Survival of Colorado Potato Beetles (Coleoptera: Chrysomelidae) in North Carolina. Journal of Economic Entomology, 1999, 92, 1165-1171.	1.8	6
57	Sampling for the Incidence of Aphid-Transmitted Viruses in Snap Bean. Phytopathology, 2005, 95, 1405-1411.	2.2	6
58	Managing Allium Leafminer (Diptera: Agromyzidae): An Emerging Pest of Allium Crops in North America. Journal of Economic Entomology, 2020, 113, 2300-2309.	1.8	6
59	Management of Onion Thrips (Thrips tabaci) in Organic Onion Production Using Multiple IPM Tactics. Insects, 2021, 12, 207.	2.2	6
60	ONION THRIPS CONTROL IN ONION, 2006. Arthropod Management Tests, 2008, 33, .	0.1	5
61	ONION THRIPS CONTROL IN ONION, 2009. Arthropod Management Tests, 2010, 35, .	0.1	5
62	Iris Yellow Spot Virus Prolongs the Adult Lifespan of Its Primary Vector, Onion Thrips (Thrips tabaci) (Thysanoptera: Thripidae). Journal of Insect Science, 2019, 19, .	1.5	5
63	Insights into How Spinosad Seed Treatment Protects Onion From Onion Maggot (Diptera:) Tj ETQq1 1 0.784314 r	gBT /Overl	lgck 10 Tf
64	Managing Colorado Potato Beetles (Coleoptera: Chrysomelidae) and European Corn Borers (Lepidoptera: Pyralidae) in Potato with Foliar Applications of Bacillus thuringiensis Berliner. Journal of Entomological Science, 2000, 35, 373-384.	0.3	5
65	Resistance to Onion Thrips (Thysanoptera: Thripidae) in Onion Cultivars does not Prevent Infection by <i>Iris Yellow Spot </i> Virus Following Vector-Mediated Transmission. Florida Entomologist, 2012, 95, 156-161.	0.5	4
66	Alate Aphid (Hemiptera: Aphididae) Species Composition and Richness in Northeastern USA Snap Beans and an Update To Historical Lists. Florida Entomologist, 2014, 97, 979-994.	0.5	4
67	EstimatingE-Race European Corn Borer (Lepidoptera: Crambidae) Adult Activity in Snap Bean Fields Based on Corn Planting Intensity and Their Activity in Corn in New York Agroecosystems. Journal of Economic Entomology, 2016, 109, 2210-2214.	1.8	4
68	Residual activity of diamide insecticides for Ostrinia nubilalis control in processing snap bean. Crop Protection, 2017, 98, 116-123.	2.1	4
69	Onion Maggot Control in Onion, 2019. Arthropod Management Tests, 2020, 45, .	0.1	4
70	Onion Maggot (Diptera: Anthomyiidae) Resistance to Chlorpyrifos in New York Onion Fields. Journal of Economic Entomology, 2006, 99, 1375-1380.	1.8	4
71	Response of Potato Tuber Yield to Stem Injury by European Corn Borer (Lepidoptera: Crambidae) in the Mid-Atlantic United States. Journal of Economic Entomology, 2001, 94, 1162-1169.	1.8	3
72	ONION THRIPS CONTROL ON ONION, 2005. Arthropod Management Tests, 2006, 31, .	0.1	3

#	Article	IF	CITATIONS
73	ONION THRIPS CONTROL IN ONION, 2013. Arthropod Management Tests, 2014, 39, .	0.1	3
74	Onion Thrips Control in Onion, 2017. Arthropod Management Tests, 2019, 44, .	0.1	3
75	Field monitoring of onion maggot (Delia antiqua) fly through improved trapping. Journal of Applied Entomology, 2020, 144, 382-387.	1.8	3
76	ONION THRIPS CONTROL IN ONION, 2011. Arthropod Management Tests, 2013, 38, .	0.1	2
77	OUP accepted manuscript. Journal of Economic Entomology, 2021, 114, 2236-2240.	1.8	2
78	Conventional Soil Management May Promote Nutrients That Lure an Insect Pest to a Toxic Crop. Environmental Entomology, 2021, 50, 433-443.	1.4	2
79	Optimizing Spinosyn Insecticide Applications for Allium Leafminer (Diptera: Agromyzidae) Management in Allium Crops. Journal of Economic Entomology, 2022, 115, 618-623.	1.8	2
80	Impact of Reducing Synthetic Chemical Inputs on Pest and Disease Management in Commercial Onion Production Systems. Agronomy, 2022, 12, 1292.	3.0	2
81	EVALUATION OF INSECTICIDES FOR CONTROLLING INSECT PESTS IN SWEET CORN, 2000. Arthropod Management Tests, 2001, 26, .	0.1	1
82	Performance of a semi-glossy onion hybrid in certified organic onion fields infested with Thrips tabaci and bulb-rot causing bacteria. Crop Protection, 2022, 160, 106037.	2.1	0