Michele Perego

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1163819/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Manipulation of two-dimensional arrays of Si nanocrystals embedded in thin SiO2 layers by low energy ion implantation. Journal of Applied Physics, 2004, 95, 5696-5702.	1.1	115
2	Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM. , 2007, , .		95
3	Fabrication of GeO2 layers using a divalent Ge precursor. Applied Physics Letters, 2007, 90, 162115.	1.5	84
4	Rapid thermal processing of self-assembling block copolymer thin films. Nanotechnology, 2013, 24, 315601.	1.3	72
5	Resistive Switching in High-Density Nanodevices Fabricated by Block Copolymer Self-Assembly. ACS Nano, 2015, 9, 2518-2529.	7.3	72
6	Poly(3-hexylthiophene)/ZnO hybrid pn junctions for microelectronics applications. Applied Physics Letters, 2009, 94, .	1.5	71
7	Ultrathin Random Copolymer-Grafted Layers for Block Copolymer Self-Assembly. ACS Applied Materials & Interfaces, 2015, 7, 10944-10951.	4.0	71
8	Phosphorus doping of ultra-small silicon nanocrystals. Nanotechnology, 2010, 21, 025602.	1.3	68
9	Silicon nanocrystal memory devices obtained by ultra-low-energy ion-beam synthesis. Solid-State Electronics, 2004, 48, 1511-1517.	0.8	65
10	Fine Tuning of Lithographic Masks through Thin Films of PS- <i>b</i> -PMMA with Different Molar Mass by Rapid Thermal Processing. ACS Applied Materials & Interfaces, 2014, 6, 7180-7188.	4.0	64
11	CUORE-0 detector: design, construction and operation. Journal of Instrumentation, 2016, 11, P07009-P07009.	0.5	64
12	Energy band alignment at TiO2â^•Si interface with various interlayers. Journal of Applied Physics, 2008, 103, .	1.1	63
13	Charging phenomena in dielectric/semiconductor heterostructures during x-ray photoelectron spectroscopy measurements. Journal of Applied Physics, 2011, 110, .	1.1	62
14	Resistance switching in amorphous and crystalline binary oxides grown by electron beam evaporation and atomic layer deposition. Microelectronic Engineering, 2008, 85, 2414-2419.	1.1	55
15	Ordering dynamics in symmetric PS-b-PMMA diblock copolymer thin films during rapid thermal processing. Journal of Materials Chemistry C, 2014, 2, 6655-6664.	2.7	54
16	Detection and characterization of silicon nanocrystals embedded in thin oxide layers. Journal of Applied Physics, 2004, 95, 257-262.	1.1	53
17	Conduction band offset of HfO2 on GaAs. Applied Physics Letters, 2007, 91, .	1.5	46
18	Nanocrystals manufacturing by ultra-low-energy ion-beam-synthesis for non-volatile memory applications. Nuclear Instruments & Methods in Physics Research B, 2004, 216, 228-238.	0.6	45

#	Article	IF	CITATIONS
19	Behavior of phosphorous and contaminants from molecular doping combined with a conventional spike annealing method. Nanoscale, 2014, 6, 706-710.	2.8	45
20	Trimethylaluminum Diffusion in PMMA Thin Films during Sequential Infiltration Synthesis: In Situ Dynamic Spectroscopic Ellipsometric Investigation. Advanced Materials Interfaces, 2018, 5, 1801016.	1.9	44
21	On the Thermal Stability of PS- <i>b</i> -PMMA Block and P(S- <i>r</i> -MMA) Random Copolymers for Nanopatterning Applications. Macromolecules, 2013, 46, 8224-8234.	2.2	43
22	Flash grafting of functional random copolymers for surface neutralization. Journal of Materials Chemistry C, 2014, 2, 4909-4917.	2.7	43
23	Solid-state dewetting of ultra-thin Au films on SiO ₂ and HfO ₂ . Nanotechnology, 2014, 25, 495603.	1.3	41
24	Energy band alignment of HfO2 on Ge. Journal of Applied Physics, 2006, 100, 093718.	1.1	40
25	Atomic Layer Deposition of NiO Films on Si(100) Using Cyclopentadienyl-Type Compounds and Ozone as Precursors. Journal of the Electrochemical Society, 2008, 155, H807.	1.3	40
26	Dielectric properties of Erâ^'doped HfO2â€^(Erâ^¼15%) grown by atomic layer deposition for high-κ gate stacks. Applied Physics Letters, 2010, 96, .	1.5	37
27	The energy band alignment of Si nanocrystals in SiO2. Applied Physics Letters, 2011, 99, .	1.5	37
28	High Aspect Ratio PS- <i>b</i> -PMMA Block Copolymer Masks for Lithographic Applications. ACS Applied Materials & Interfaces, 2014, 6, 21389-21396.	4.0	35
29	Control of Doping Level in Semiconductors <i>via</i> Self-Limited Grafting of Phosphorus End-Terminated Polymers. ACS Nano, 2018, 12, 178-186.	7.3	35
30	Silicon self-diffusivity measurement in thermal SiO2 by 30Si/28Si isotopic exchange. Journal of Applied Physics, 2003, 94, 2136-2138.	1.1	34
31	Doping of silicon nanocrystals. Materials Science in Semiconductor Processing, 2017, 62, 156-170.	1.9	34
32	Microdomain orientation dependence on thickness in thin films of cylinder-forming PS- <i>b</i> -PMMA. Nanotechnology, 2010, 21, 185304.	1.3	33
33	Scaling size of the interplay between quantum confinement and surface related effects in nanostructured silicon. Applied Physics Letters, 2013, 103, .	1.5	33
34	Thermodynamic stability of high phosphorus concentration in silicon nanostructures. Nanoscale, 2015, 7, 14469-14475.	2.8	33
35	Thermally induced permittivity enhancement in La-doped ZrO2 grown by atomic layer deposition on Ge(100). Applied Physics Letters, 2009, 95, 122902.	1.5	31
36	Thermally induced self-assembly of cylindrical nanodomains in low molecular weight PS- <i>b</i> >PMMA thin films. Nanotechnology, 2014, 25, 045301.	1.3	31

#	Article	IF	CITATIONS
37	Characterization of ultra-thin polymeric films by Gas chromatography-Mass spectrometry hyphenated to thermogravimetry. Journal of Chromatography A, 2014, 1368, 204-210.	1.8	31
38	O3-based atomic layer deposition of hexagonal La2O3 films on Si(100) and Ge(100) substrates. Journal of Applied Physics, 2010, 108, 084108.	1.1	30
39	Stability of Ag nanocrystals synthesized by ultra-low energy ion implantation in SiO2 matrices. Journal of Applied Physics, 2011, 109, .	1.1	30
40	Si surface passivation by Al2O3 thin films deposited using a low thermal budget atomic layer deposition process. Applied Physics Letters, 2013, 102, .	1.5	30
41	Scaling of correlation length in lamellae forming PS-b-PMMA thin films upon high temperature rapid thermal treatments. Journal of Materials Chemistry C, 2015, 3, 8618-8624.	2.7	29
42	Ozone-Based Sequential Infiltration Synthesis of Al ₂ O ₃ Nanostructures in Symmetric Block Copolymer. ACS Applied Materials & Interfaces, 2016, 8, 33933-33942.	4.0	29
43	X-ray photoelectron spectroscopy study of energy-band alignments of Lu2O3 on Ge. Surface and Interface Analysis, 2006, 38, 494-497.	0.8	28
44	Thermal Stability of Functional P(S-r-MMA) Random Copolymers for Nanolithographic Applications. ACS Applied Materials & Interfaces, 2015, 7, 3920-3930.	4.0	28
45	The effect of random copolymer on the characteristic dimensions of cylinder-forming PS-b-PMMA thin films. Nanotechnology, 2011, 22, 185304.	1.3	27
46	Role of oxygen vacancies on the structure and density of states of iron-doped zirconia. Physical Review B, 2013, 87, .	1,1	27
47	Synthesis and characterization of P <i>δ</i> -layer in SiO ₂ by monolayer doping. Nanotechnology, 2016, 27, 075606.	1.3	27
48	Evolution of lateral ordering in symmetric block copolymer thin films upon rapid thermal processing. Nanotechnology, 2014, 25, 275601.	1.3	26
49	Quantification of phosphorus diffusion and incorporation in silicon nanocrystals embedded in silicon oxide. Surface and Interface Analysis, 2014, 46, 393-396.	0.8	26
50	Quantitative depth profiling at silicon/silicon oxide interfaces by means of Cs+ sputtering in negative mode by ToF-SIMS: a full spectrum approach. Applied Surface Science, 2003, 203-204, 52-55.	3.1	25
51	Time of flight secondary ion mass spectrometry study of silicon nanoclusters embedded in thin silicon oxide layers. Applied Physics Letters, 2003, 82, 121-123.	1.5	25
52	Study of the interfaces in resistive switching NiO thin films deposited by both ALD and e-beam coupled with different electrodes (Si, Ni, Pt, W, TiN). Microelectronic Engineering, 2008, 85, 2425-2429.	1.1	24
53	GISAXS Analysis of the In-Depth Morphology of Thick PS- <i>b</i> -PMMA Films. ACS Applied Materials & Interfaces, 2017, 9, 11054-11063.	4.0	24
54	The fabrication of tunable nanoporous oxide surfaces by block copolymer lithography and atomic layer deposition. Nanotechnology, 2011, 22, 335303.	1.3	23

#	Article	IF	CITATIONS
55	Enhanced Lateral Ordering in Cylinder Forming PS- <i>b</i> -PMMA Block Copolymers Exploiting the Entrapped Solvent. ACS Applied Materials & Interfaces, 2016, 8, 8280-8288.	4.0	22
56	Hierarchical Order in Dewetted Block Copolymer Thin Films on Chemically Patterned Surfaces. ACS Nano, 2018, 12, 7076-7085.	7.3	22
57	High temperature surface neutralization process with random copolymers for block copolymer selfâ€assembly. Polymer International, 2017, 66, 459-467.	1.6	21
58	Effect of Trapped Solvent on the Interface between PS- <i>b</i> PMMA Thin Films and P(S- <i>r</i> MMA) Brush Layers. ACS Applied Materials & Interfaces, 2020, 12, 7777-7787.	4.0	21
59	Thermally induced orientational flipping of cylindrical phase diblock copolymers. Journal of Materials Chemistry C, 2014, 2, 2175-2182.	2.7	20
60	Atomic Layer Deposition of Magnetic Thin Films. Acta Physica Polonica A, 2007, 112, 1271-1280.	0.2	20
61	Electronic properties at the oxide interface with silicon and germanium through x-ray induced oxide charging. Applied Physics Letters, 2012, 101, 211606.	1.5	19
62	Micrometer-Scale Ordering of Silicon-Containing Block Copolymer Thin Films via High-Temperature Thermal Treatments. ACS Applied Materials & Interfaces, 2016, 8, 9897-9908.	4.0	19
63	Effect of the Density of Reactive Sites in P(Sâ€ <i>r</i> â€MMA) Film during Al ₂ O ₃ Growth by Sequential Infiltration Synthesis. Advanced Materials Interfaces, 2019, 6, 1900503.	1.9	19
64	XPS and IPE analysis of HfO2 band alignment with high-mobility semiconductors. Materials Science in Semiconductor Processing, 2008, 11, 221-225.	1.9	18
65	Mechanisms for Substrate-Enhanced Growth during the Early Stages of Atomic Layer Deposition of Alumina onto Silicon Nitride Surfaces. Chemistry of Materials, 2012, 24, 1080-1090.	3.2	17
66	Collective behavior of block copolymer thin films within periodic topographical structures. Nanotechnology, 2013, 24, 245301.	1.3	17
67	Doping of silicon by phosphorus end-terminated polymers: drive-in and activation of dopants. Journal of Materials Chemistry C, 2020, 8, 10229-10237.	2.7	17
68	Characterization of silicon nanocrystals embedded in thin oxide layers by TOF-SIMS. Applied Surface Science, 2004, 231-232, 813-816.	3.1	16
69	Effect of oxygen on the electronic configuration of Gd2O3â^•Ge heterojunctions. Applied Physics Letters, 2008, 92, 042106.	1.5	16
70	TGA-GC–MS quantitative analysis of phosphorus-end capped functional polymers in bulk and ultrathin films. Journal of Analytical and Applied Pyrolysis, 2017, 128, 238-245.	2.6	16
71	Si nanocrystal synthesis in HfO ₂ /SiO/HfO ₂ multilayer structures. Nanotechnology, 2010, 21, 055606.	1.3	15
72	Neutral wetting brush layers for block copolymer thin films using homopolymer blends processed at high temperatures. Nanotechnology, 2015, 26, 415603.	1.3	15

#	Article	lF	CITATIONS
73	Effect of Entrapped Solvent on the Evolution of Lateral Order in Self-Assembled P(S- <i>r</i> -MMA)/PS- <i>b</i> -PMMA Systems with Different Thicknesses. ACS Applied Materials & Interfaces, 2017, 9, 31215-31223.	4.0	15
74	Thermal Degradation in Ultrathin Films Outperforms Dose Control of n-Type Polymeric Dopants for Silicon. ACS Applied Electronic Materials, 2019, 1, 1807-1816.	2.0	15
75	Superconducting Ga-overdoped Ge layers capped with SiO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>: Structural and transport investigations. Physical Review B. 2012. 85</mml:math 	1.1	14
76	Evolution of shape, size, and areal density of a single plane of Si nanocrystals embedded in SiO ₂ matrix studied by atom probe tomography. RSC Advances, 2016, 6, 3617-3622.	1.7	14
77	Toward Lateral Length Standards at the Nanoscale Based on Diblock Copolymers. ACS Applied Materials & Interfaces, 2017, 9, 15685-15697.	4.0	14
78	Understanding of the thermal stability of the hafnium oxide/TiN stack via 2 "high k―and 2 metal deposition techniques. Microelectronic Engineering, 2007, 84, 1886-1889.	1.1	13
79	In-plane organization of silicon nanocrystals embedded in SiO2thin films. Nanotechnology, 2013, 24, 075302.	1.3	13
80	Surface passivation for ultrathin Al ₂ O ₃ layers grown at low temperature by thermal atomic layer deposition. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 732-736.	0.8	13
81	Understanding the role of defects in Silicon Nitride-based resistive switching memories through oxygen doping. IEEE Nanotechnology Magazine, 2021, , 1-1.	1.1	13
82	Negative cluster emission in sputtering of Si1â^'xGex alloys: A full spectrum approach. Surface Science, 2005, 599, 141-149.	0.8	12
83	The interface between Gd2O3 films and Ge(001): A comparative study between molecular and atomic oxygen mediated growths. Journal of Applied Physics, 2007, 102, 034513.	1.1	12
84	ToFâ€SIMS study of phosphorus diffusion in lowâ€dimensional silicon structures. Surface and Interface Analysis, 2013, 45, 386-389.	0.8	12
85	Development and Synchrotronâ€Based Characterization of Al and Cr Nanostructures as Potential Calibration Samples for 3D Analytical Techniques. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700866.	0.8	12
86	Thickness and Microdomain Orientation of Asymmetric PS- <i>b</i> -PMMA Block Copolymer Films Inside Periodic Gratings. ACS Applied Materials & Interfaces, 2015, 7, 23615-23622.	4.0	11
87	Fabrication of periodic arrays of metallic nanoparticles by block copolymer templates on HfO ₂ substrates. Nanotechnology, 2015, 26, 215301.	1.3	11
88	Evidence of Mechanochemical Control in "Grafting to―Reactions of Hydroxy-Terminated Statistical Copolymers. Macromolecules, 2021, 54, 499-508.	2.2	11
89	Characterization of gate oxynitrides by means of time of flight secondary ion mass spectrometry and x-ray photoelectron spectroscopy. Quantification of nitrogen. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 616-621.	0.9	10
90	Detrimental impact of technological processes on BTI reliability of advanced high-K/metal gate stacks. Reliability Physics Symposium, 2009 IEEE International, 2009, , .	0.0	10

#	Article	IF	CITATIONS
91	Modeling of phosphorus diffusion in silicon oxide and incorporation in silicon nanocrystals. Journal of Materials Chemistry C, 2016, 4, 3531-3539.	2.7	10
92	Magnetization switching in high-density magnetic nanodots by a fine-tune sputtering process on a large-area diblock copolymer mask. Nanoscale, 2017, 9, 16981-16992.	2.8	10
93	Study of recrystallization and activation processes in thin and highly doped silicon-on-insulator layers by nanosecond laser thermal annealing. Journal of Applied Physics, 2022, 131, .	1.1	10
94	Improving HfO ₂ -Based Resistive Switching Devices by Inserting a TaO _{<i>x</i>} Thin Film via Engineered In Situ Oxidation. ACS Applied Materials & Interfaces, 2022, 14, 24565-24574.	4.0	10
95	Wet oxidation of nitride layer implanted with low-energy Si ions for improved oxide-nitride-oxide memory stacks. Applied Physics Letters, 2007, 90, .	1.5	9
96	Atomic oxygen-assisted molecular beam deposition of Gd2O3 films for ultra-scaled Ge-based electronic devices. Materials Science in Semiconductor Processing, 2008, 11, 236-240.	1.9	9
97	Rare earth-based high-k materials for non-volatile memory applications. Microelectronic Engineering, 2010, 87, 290-293.	1.1	9
98	Engineering of the spin on dopant process on silicon on insulator substrate. Nanotechnology, 2021, 32, 025303.	1.3	9
99	Oxidation of nitrogen-implanted silicon: Comparison of nitrogen distribution and electrical properties of oxides formed by very low and medium energy N2+ implantation. Journal of Applied Physics, 2004, 96, 300-309.	1.1	8
100	Materials Science Issues for the Fabrication of Nanocrystal Memory Devices by Ultra Low Energy Ion Implantation. Defect and Diffusion Forum, 2006, 258-260, 531-541.	0.4	8
101	Structural and electrical properties of Er-doped HfO2 and of its interface with Ge (001). Microelectronic Engineering, 2011, 88, 415-418.	1.1	8
102	Influence of block copolymer feature size on reactive ion etching pattern transfer into silicon. Nanotechnology, 2017, 28, 404001.	1.3	8
103	Electronic band structures of undoped and P-doped Si nanocrystals embedded in SiO ₂ . Journal of Materials Chemistry C, 2018, 6, 119-126.	2.7	8
104	Thermodynamics and ordering kinetics in asymmetric PS- <i>b</i> -PMMA block copolymer thin films. Soft Matter, 2020, 16, 5525-5533.	1.2	8
105	Doping of silicon with phosphorus end-terminated polymers: source characterization and dopant diffusion in SiO ₂ . Journal of Materials Chemistry C, 2021, 9, 4020-4028.	2.7	8
106	Quantification of molecular weight discrimination in <i>grafting to</i> reactions from ultrathin polymer films by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analyst, The, 2021, 146, 6145-6155.	1.7	8
107	Ordering kinetics in two-dimensional hexagonal pattern of cylinder-forming PS- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>b</mml:mi> -PMMA block copolymer thin films: Dependence on the segregation strength. Physical Review Materials, 2018, 2, .</mml:math 	0.9	8
108	Silicon Doping by Polymer Grafting: Size Distribution Matters. ACS Applied Polymer Materials, 2021, 3, 6383-6393.	2.0	8

#	Article	IF	CITATIONS
109	Oxidation-enhanced diffusion of boron in very low-energy N2+-implanted silicon. Journal of Applied Physics, 2005, 97, 113534.	1.1	7
110	Synthesis of mono and bi-layer of Si nanocrystals embedded in a dielectric matrix by e-beam evaporation of SiO/SiO2 thin films. Materials Science and Engineering C, 2006, 26, 835-839.	3.8	7
111	Nanocrystals in High-k Dielectric Stacks for Non-Volatile Memory Applications. Advances in Science and Technology, 2006, 51, 156-166.	0.2	7
112	Chemical and Structural Properties of a TaN/HfO[sub 2] Gate Stack Processed Using Atomic Vapor Deposition. Journal of the Electrochemical Society, 2009, 156, G78.	1.3	6
113	Composition of ultrathin binary polymer brushes by thermogravimetry–gas chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 2016, 408, 3155-3163.	1.9	6
114	Technological strategies for self-assembly of PS-b-PDMS in cylindrical sub-10 nm nanostructures for lithographic applications. Advances in Physics: X, 2018, 3, 1445558.	1.5	6
115	Inside the brush: partition by molecular weight in grafting to reactions from melt. Polymer Chemistry, 2021, 12, 6538-6547.	1.9	6
116	Short <i>vs.</i> long chains competition during " <i>grafting to</i> ―process from melt. Polymer Chemistry, 2022, 13, 3904-3914.	1.9	6
117	Nanocrystals depth profiling by means of Cs+ in negative polarity with dual beam ToF-SIMS. Applied Surface Science, 2003, 203-204, 110-113.	3.1	5
118	Fabrication of nanocrystal memories by ultra low energy ion implantation. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 1907-1911.	0.8	5
119	Experimental Determination of the Band Offset of Rare Earth Oxides onÂVariousÂSemiconductors. , 0, , 269-283.		4
120	Oxide-nitride-oxide memory stacks formed by low-energy Si ion implantation into nitride and wet oxidation. Microelectronic Engineering, 2007, 84, 1986-1989.	1.1	4
121	Fabrication of well-ordered arrays of silicon nanocrystals using a block copolymer mask. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1477-1484.	0.8	4
122	Nanoscale control of Si nanoparticles within a 2D hexagonal array embedded in SiO2thin films. Nanotechnology, 2017, 28, 014001.	1.3	4
123	Molar mass and composition effects on the thermal stability of functional P(S- <i>r</i> -MMA) random copolymers for nanolithographic applications. Molecular Systems Design and Engineering, 2017, 2, 581-588.	1.7	4
124	Interface Study in a "Metal / High-k" Gate Stack: Tantalum Nitride on Hafnium Oxide. ECS Transactions, 2008, 16, 99-110.	0.3	3
125	Silicon crystallization in nanodot arrays organized by block copolymer lithography. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	3
126	Focus on sub-10 nm nanofabrication. Nanotechnology, 2018, 29, 260201.	1.3	3

#	Article	IF	CITATIONS
127	Bottomâ€Up Assembly of Micro/Nanostructures. Advanced Materials Interfaces, 2020, 7, 2000182.	1.9	3
128	Influence of spin casting solvent on the selfâ€assembly of siliconâ€containing block copolymer thin films via high temperature thermal treatment. Polymer International, 2022, 71, 426-435.	1.6	3
129	Al ₂ O ₃ Dot and Antidot Array Synthesis in Hexagonally Packed Poly(styrene- <i>block</i> -methyl methacrylate) Nanometer-Thick Films for Nanostructure Fabrication. ACS Applied Nano Materials, 0, , .	2.4	2
130	Depth positioning of silicon nanoparticles created by Si ULE implants in ultrathin SiO ₂ . , 2002, , .		1
131	Manipulation of 2D arrays of Si nanocrystals by ultra-low-energy ion beam-synthesis for nonvolatile memories applications. Materials Research Society Symposia Proceedings, 2004, 830, 219.	0.1	1
132	Interstitial injection during oxidation of very low energy nitrogen-implanted silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125, 314-318.	1.7	1
133	Comparative study of negative cluster emission in sputtering of Si, Ge and their oxides. Applied Surface Science, 2006, 252, 7236-7238.	3.1	1
134	Evidence for a dose dependence for thermal redistribution of implanted silicon in SiO2. Nuclear Instruments & Methods in Physics Research B, 2007, 254, 139-142.	0.6	1
135	Al2O3 Passivation on c-si Surfaces for Low Temperature Solar Cell Applications. Energy Procedia, 2013, 38, 872-880.	1.8	1
136	Effective surface passivation of Si surfaces by chemical deposition of (Al ₂ O ₃) _{<i>x</i>} (B ₂ O ₃) _{1 â^` <i thin layers. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 701-706.</i }	>x∢ di 8 <td>ıb>1</td>	ıb>1
137	Surface engineering with functional random copolymers for nanolithographic applications. AIP Conference Proceedings, 2016, , .	0.3	1
138	From grafting to to grafting from. AIP Conference Proceedings, 2018, , .	0.3	1
139	Pillars fabrication by DSA lithography: material and process options. , 2018, , .		1
140	Nitrogen distribution during oxidation of low and medium energy nitrogen-implanted silicon. Nuclear Instruments & Methods in Physics Research B, 2004, 216, 75-79.	0.6	0
141	Electroluminescence from C- and Si- rich silicon oxides in continuous wave and pulsed excitation. , 2007, , .		0
142	Magnetic hysteresis in array of magnetic nanostructures by block copolymers. , 2015, , .		0
143	Neutral wetting brush layers for block copolymer thin films using homopolymer blends. AIP Conference Proceedings, 2016, , .	0.3	0
144	Analysis of phosphorus-end capped functionalpolymers, from bulk to ultrathin films. AIP Conference Proceedings, 2018, , .	0.3	0

#	Article	IF	CITATIONS
145	Deterministic doping via self-limited grafting of phosphorus end-terminated polymers. AIP Conference Proceedings, 2018, , .	0.3	0
146	Boron-terminated polystyrene as potential spin-on dopant for microelectronic applications. AIP Conference Proceedings, 2018, , .	0.3	0