Lan-Feng Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11637863/publications.pdf

Version: 2024-02-01

159525 223716 3,385 47 30 46 citations h-index g-index papers 51 51 51 4813 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mitochondrial Genome Acquisition Restores Respiratory Function and Tumorigenic Potential of Cancer Cells without Mitochondrial DNA. Cell Metabolism, 2015, 21, 81-94.	7.2	582
2	Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. ELife, 2017, 6, .	2.8	205
3	Classification of mitocans, anti-cancer drugs acting on mitochondria. Mitochondrion, 2013, 13, 199-208.	1.6	199
4	Mitochondrial Targeting of Vitamin E Succinate Enhances Its Pro-apoptotic and Anti-cancer Activity via Mitochondrial Complex II. Journal of Biological Chemistry, 2011, 286, 3717-3728.	1.6	171
5	Molecular mechanism of â€~mitocan'-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Letters, 2006, 580, 5125-5129.	1.3	166
6	Vitamin E Analogs, a Novel Group of "Mitocans,―as Anticancer Agents: The Importance of Being Redox-Silent. Molecular Pharmacology, 2007, 71, 1185-1199.	1.0	131
7	Suppression of Tumor Growth <i>In vivo</i> by the Mitocan α-tocopheryl Succinate Requires Respiratory Complex II. Clinical Cancer Research, 2009, 15, 1593-1600.	3.2	125
8	Mitocans as anti-cancer agents targeting mitochondria: lessons from studies with vitamin E analogues, inhibitors of complex II. Journal of Bioenergetics and Biomembranes, 2007, 39, 65-72.	1.0	116
9	Mitochondrially targeted anti-cancer agents. Mitochondrion, 2010, 10, 670-681.	1.6	114
10	Mitochondrial targeting of \hat{l} ±-tocopheryl succinate enhances its pro-apoptotic efficacy: A new paradigm for effective cancer therapy. Free Radical Biology and Medicine, 2011, 50, 1546-1555.	1.3	100
11	Vitamin E Analogues Inhibit Angiogenesis by Selective Induction of Apoptosis in Proliferating Endothelial Cells: The Role of Oxidative Stress. Cancer Research, 2007, 67, 11906-11913.	0.4	99
12	Vitamin E analogues as a novel group of mitocans: Anti-cancer agents that act by targeting mitochondria. Molecular Aspects of Medicine, 2007, 28, 607-645.	2.7	96
13	Selective Disruption of Respiratory Supercomplexes as a New Strategy to Suppress Her2 ^{high} Breast Cancer. Antioxidants and Redox Signaling, 2017, 26, 84-103.	2.5	93
14	Hippo/Mst1 Stimulates Transcription of the Proapoptotic Mediator <i>NOXA</i> in a FoxO1-Dependent Manner. Cancer Research, 2011, 71, 946-954.	0.4	91
15	MicroRNA-126 Suppresses Mesothelioma Malignancy by Targeting IRS1 and Interfering with the Mitochondrial Function. Antioxidants and Redox Signaling, 2014, 21, 2109-2125.	2.5	85
16	A Peptide Conjugate of Vitamin E Succinate Targets Breast Cancer Cells with High ErbB2 Expression. Cancer Research, 2007, 67, 3337-3344.	0.4	84
17	Thiodigalactoside inhibits murine cancers by concurrently blocking effects of galectin-1 on immune dysregulation, angiogenesis and protection against oxidative stress. Angiogenesis, 2011, 14, 293-307.	3.7	84
18	Anticancer Drugs Targeting the Mitochondrial Electron Transport Chain. Antioxidants and Redox Signaling, 2011, 15, 2951-2974.	2.5	79

#	Article	IF	Citations
19	Mitochondria transmit apoptosis signalling in cardiomyocyte-like cells and isolated hearts exposed to experimental ischemia-reperfusion injury. Redox Report, 2007, 12, 148-162.	1.4	76
20	\hat{l}_{\pm} -Tocopheryl succinate causes mitochondrial permeabilization by preferential formation of Bak channels. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 782-794.	2.2	51
21	Combined circulating epigenetic markers to improve mesothelin performance in the diagnosis of malignant mesothelioma. Lung Cancer, 2015, 90, 457-464.	0.9	51
22	Mitochondrially Targeted α-Tocopheryl Succinate Is Antiangiogenic: Potential Benefit Against Tumor Angiogenesis but Caution Against Wound Healing. Antioxidants and Redox Signaling, 2011, 15, 2923-2935.	2.5	48
23	Liposomal formulation of α-tocopheryl maleamide: In vitro and in vivo toxicological profile and anticancer effect against spontaneous breast carcinomas in mice. Toxicology and Applied Pharmacology, 2009, 237, 249-257.	1.3	43
24	Selenium supplementation induces mitochondrial biogenesis in trophoblasts. Placenta, 2015, 36, 863-869.	0.7	41
25	MicroRNA-126 induces autophagy by altering cell metabolism in malignant mesothelioma. Oncotarget, 2016, 7, 36338-36352.	0.8	41
26	Mitochondrially Targeted Vitamin E Succinate Modulates Expression of Mitochondrial DNA Transcripts and Mitochondrial Biogenesis. Antioxidants and Redox Signaling, 2015, 22, 883-900.	2.5	39
27	Marizomib suppresses triple-negative breast cancer via proteasome and oxidative phosphorylation inhibition. Theranostics, 2020, 10, 5259-5275.	4.6	39
28	Powerhouse down: Complex II dissociation in the respiratory chain. Mitochondrion, 2014, 19, 20-28.	1.6	37
29	Molecular mechanism for the selective impairment of cancer mitochondrial function by a mitochondrially targeted vitamin E analogue. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1597-1607.	0.5	32
30	Mitochondrial targeting overcomes ABCA1-dependent resistance of lung carcinoma to $\hat{l}\pm$ -tocopheryl succinate. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 286-299.	2.2	32
31	Mitochondria in Cancer. Progress in Molecular Biology and Translational Science, 2014, 127, 211-227.	0.9	31
32	Mitochondrial targeting of \hat{l}_{\pm} -tocopheryl succinate enhances its anti-mesothelioma efficacy. Redox Report, 2014, 19, 16-25.	1.4	29
33	Indoleamine-2,3-dioxygenase elevated in tumor-initiating cells is suppressed by mitocans. Free Radical Biology and Medicine, 2014, 67, 41-50.	1.3	27
34	Characterisation of Mesothelioma-Initiating Cells and Their Susceptibility to Anti-Cancer Agents. PLoS ONE, 2015, 10, e0119549.	1.1	23
35	αâ€Tocopheryloxyacetic acid is superior to αâ€tocopheryl succinate in suppressing HER2â€high breast carcinomas due to its higher stability. International Journal of Cancer, 2012, 131, 1052-1058.	2.3	22
36	Redox-active and Redox-silent Compounds: Synergistic Therapeutics in Cancer. Current Medicinal Chemistry, 2015, 22, 552-568.	1.2	21

#	Article	IF	CITATIONS
37	αâ€Tocopheryl succinate inhibits angiogenesis by disrupting paracrine FGF2 signalling. FEBS Letters, 2007, 581, 4611-4615.	1.3	18
38	Cancer cells with high expression of CD133 exert FLIP upregulation and resistance to TRAILâ€induced apoptosis. BioFactors, 2008, 34, 231-235.	2.6	12
39	Daxx inhibits stress-induced apoptosis in cardiac myocytes. Redox Report, 2008, 13, 263-270.	1.4	12
40	Affinity of vitamin E analogues for the ubiquinone complex II site correlates with their toxicity to cancer cells. Molecular Nutrition and Food Research, 2011, 55, 1543-1551.	1.5	9
41	Succinobucol induces apoptosis in vascular smooth muscle cells. Free Radical Biology and Medicine, 2012, 52, 871-879.	1.3	9
42	The Potential Role of CD133 in Immune Surveillance and Apoptosis: A Mitochondrial Connection?. Antioxidants and Redox Signaling, 2011, 15, 2989-3002.	2.5	8
43	Mitochondrial Function, Fatty Acid Metabolism, and Body Composition in the Hyperbilirubinemic Gunn Rat. Frontiers in Pharmacology, 2021, 12, 586715.	1.6	3
44	Evaluation of Respiration of Mitochondria in Cancer Cells Exposed to Mitochondria-Targeted Agents. Methods in Molecular Biology, 2015, 1265, 181-194.	0.4	2
45	Vitamin E Analogues as Prototypic Mitochondria-Targeting Anti-cancer Agents. , 2014, , 151-181.		2
46	Mitocans, Mitochondria-Targeting Anticancer Drugs. Oxidative Stress and Disease, 2012, , 55-91.	0.3	1
47	Regulation of Mitochondrial Function by MicroRNA. , 2014, , 59-80.		O