List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11635747/publications.pdf Version: 2024-02-01

SHUAL CHEN

#	Article	IF	CITATIONS
1	Enhanced oxygen reduction reaction for Zn-air battery at defective carbon fibers derived from seaweed polysaccharide. Applied Catalysis B: Environmental, 2022, 301, 120785.	10.8	45
2	Selenite capture by MIL-101 (Fe) through Fe O Se bonds at free coordination Fe sites. Journal of Hazardous Materials, 2022, 424, 127715.	6.5	17
3	Synthesis and electrochemical studies of WO ₃ â€based nanomaterials for environmental, energy and gas sensing applications. Electrochemical Science Advances, 2022, 2, e2100146.	1.2	6
4	Biochar aerogel decorated with thiophene S manipulated 5-membered rings boosts nitrogen fixation. Applied Catalysis B: Environmental, 2022, 313, 121425.	10.8	5
5	Efficient WO3â^'x nanoplates photoanode based on bidentate hydrogen bonds and thermal reduction of ethylene glycol. Chemical Engineering Journal, 2021, 404, 127089.	6.6	11
6	Coupling of iron phthalocyanine at carbon defect site via ï€-ï€ stacking for enhanced oxygen reduction reaction. Applied Catalysis B: Environmental, 2021, 280, 119437.	10.8	128
7	Dramatically enhanced solar-driven water splitting of BiVO4 photoanode via strengthening hole transfer and light harvesting by co-modification of CQDs and ultrathin β-FeOOH layers. Chemical Engineering Journal, 2021, 403, 126350.	6.6	82
8	Efficient photoelectrocatalytic degradation of tylosin on TiO2 nanotube arrays with tunable phosphorus dopants. Journal of Environmental Chemical Engineering, 2021, 9, 104742.	3.3	23
9	Efficient ammonia removal and toxic chlorate control by using BiVO4/WO3 heterojunction photoanode in a self-driven PEC-chlorine system. Journal of Hazardous Materials, 2021, 402, 123725.	6.5	40
10	Pulsed electrocatalysis enables an efficient 2-electron oxygen reduction reaction for H ₂ O ₂ production. Journal of Materials Chemistry A, 2021, 9, 15948-15954.	5.2	25
11	Effect of oxygen concentration and distribution on holes transfer and photoelectrocatalytic properties in hematite. International Journal of Hydrogen Energy, 2021, 46, 7309-7319.	3.8	5
12	Fe3+-mediated coal-assisted water electrolysis for hydrogen production: Roles of mineral matter and oxygen-containing functional groups in coal. Energy, 2021, 220, 119677.	4.5	19
13	Hollow and porous NiCo2O4 nanospheres for enhanced methanol oxidation reaction and oxygen reduction reaction by oxygen vacancies engineering. Applied Catalysis B: Environmental, 2021, 291, 120065.	10.8	114
14	The design of high performance photoanode of CQDs/TiO2/WO3 based on DFT alignment of lattice parameter and energy band, and charge distribution. Journal of Colloid and Interface Science, 2021, 600, 828-837.	5.0	27
15	Coal-Assisted Water Electrolysis for Hydrogen Production: Evolution of Carbon Structure in Different-Rank Coal. Energy & Fuels, 2021, 35, 3512-3520.	2.5	10
16	Efficient denitrification and removal of natural organic matter, emerging pollutants simultaneously for RO concentrate based on photoelectrocatalytic radical reaction. Separation and Purification Technology, 2020, 234, 116032.	3.9	19
17	Ultrathin nickel phosphide nanosheet aerogel electrocatalysts derived from Ni-alginate for hydrogen evolution reaction. Journal of Alloys and Compounds, 2020, 817, 152727.	2.8	9
18	Efficient degradation of N-containing organic wastewater via chlorine oxide radical generated by a photoelectrochemical system. Chemical Engineering Journal, 2020, 392, 123695.	6.6	35

#	Article	IF	CITATIONS
19	Tungsten sulfide co-catalytic radical chain-reaction for efficient organics degradation and electricity generation. Applied Catalysis B: Environmental, 2020, 268, 118471.	10.8	7
20	Simultaneous Ni nanoparticles decoration and Ni doping of CdS nanorods for synergistically promoting photocatalytic H2 evolution. Applied Surface Science, 2020, 508, 144869.	3.1	29
21	Exhaustive denitrification via chlorine oxide radical reactions for urea based on a novel photoelectrochemical cell. Water Research, 2020, 170, 115357.	5.3	44
22	Multistep Surface Trap State Finishing Based on in Situ One-Step MOF Modification over Hematite for Dramatically Enhanced Solar Water Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 33638-33646.	4.0	5
23	Efficient SO ₂ Removal and Highly Synergistic H ₂ O ₂ Production Based on a Novel Dual-Function Photoelectrocatalytic System. Environmental Science & Technology, 2020, 54, 11515-11525.	4.6	25
24	Surface metal valence state regulating on hematite to weaken dependence of charge transport to catalyst loading. Nano Energy, 2020, 78, 105396.	8.2	5
25	Genuine Active Species Generated from Fe ₃ N Nanotube by Synergistic CoNi Doping for Boosted Oxygen Evolution Catalysis. Small, 2020, 16, e2003824.	5.2	31
26	Enhanced O2â^' and HO via in situ generating H2O2 at activated graphite felt cathode for efficient photocatalytic fuel cell. Chemical Engineering Journal, 2020, 399, 125839.	6.6	22
27	The synergic generation of CO3â ^{~,} and O2â ^{~,} radicals in a novel photocatalytic fuel cell for efficient oxidation of carbonate-containing wastewater and simultaneous electricity production. Applied Catalysis B: Environmental, 2020, 277, 119227.	10.8	11
28	Nitrogen and Sulfur Vacancies in Carbon Shell to Tune Charge Distribution of Co ₆ Ni ₃ S ₈ Core and Boost Sodium Storage. Advanced Energy Materials, 2020, 10, 1904147.	10.2	80
29	Patterning of BiVO ₄ Surfaces and Monitoring of Localized Catalytic Activity Using Scanning Photoelectrochemical Microscopy. ACS Applied Materials & Interfaces, 2020, 12, 18065-18073.	4.0	11
30	Unique hollow Ni–Fe@MoS ₂ nanocubes with boosted electrocatalytic activity for N ₂ reduction to NH ₃ . Journal of Materials Chemistry A, 2020, 8, 7339-7349.	5.2	60
31	Highly boosted gas diffusion for enhanced electrocatalytic reduction of N ₂ to NH ₃ on 3D hollow Co–MoS ₂ nanostructures. Nanoscale, 2020, 12, 6029-6036.	2.8	30
32	Efficient organic pollutants conversion and electricity generation for carbonate-containing wastewater based on carbonate radical reactions initiated by BiVO4-Au/PVC system. Journal of Hazardous Materials, 2020, 389, 122140.	6.5	14
33	Carbon quantum dots modified anatase/rutile TiO2 photoanode with dramatically enhanced photoelectrochemical performance. Applied Catalysis B: Environmental, 2020, 269, 118776.	10.8	132
34	Effect of Oxygen–Iron Composition on Charge Transport and Interface Reaction in Hematite. ACS Catalysis, 2020, 10, 2413-2418.	5.5	14
35	Bird-nest structured ZnO/TiO2 as a direct Z-scheme photoanode with enhanced light harvesting and carriers kinetics for highly efficient and stable photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2020, 267, 118599.	10.8	116
36	Electrochemical Reduction of Carbon Dioxide on Au Nanoparticles: An in Situ FTIR Study. Journal of Physical Chemistry C, 2019, 123, 23898-23906.	1.5	46

#	Article	IF	CITATIONS
37	Mechanistic insight into high-efficiency sodium storage based on N/O/P-functionalized ultrathin carbon nanosheet. Journal of Power Sources, 2019, 442, 227184.	4.0	18
38	Controllable synthesis of CoN ₃ catalysts derived from Co/Zn-ZIF-67 for electrocatalytic oxygen reduction in acidic electrolytes. Journal of Materials Chemistry A, 2019, 7, 21884-21891.	5.2	67
39	Seaweed-derived synthesis of Na3.12Fe2.44(P2O7)2/r-GO aerogels as air stable cathode materials for sodium-ion batteries. Chemical Engineering Journal, 2019, 365, 325-333.	6.6	24
40	Sulfur vacancy-rich N-doped MoS ₂ nanoflowers for highly boosting electrocatalytic N ₂ fixation to NH ₃ under ambient conditions. Chemical Communications, 2019, 55, 7386-7389.	2.2	111
41	Extremely Efficient Decomposition of Ammonia N to N ₂ Using ClO [•] from Reactions of HO [•] and HOCl Generated <i>in Situ</i> on a Novel Bifacial Photoelectroanode. Environmental Science & Technology, 2019, 53, 6945-6953.	4.6	84
42	3D Sulfur and Nitrogen Codoped Carbon Nanofiber Aerogels with Optimized Electronic Structure and Enlarged Interlayer Spacing Boost Potassiumâ€lon Storage. Small, 2019, 15, e1900816.	5.2	122
43	Fe-alginate biomass-derived FeS/3D interconnected carbon nanofiber aerogels as anodes for high performance sodium-ion batteries. Journal of Alloys and Compounds, 2019, 795, 54-59.	2.8	18
44	Generating Oxygen Vacancies in MnO Hexagonal Sheets for Ultralong Life Lithium Storage with High Capacity. ACS Nano, 2019, 13, 2062-2071.	7.3	65
45	Ultrafine FeSe nanoparticles embedded into 3D carbon nanofiber aerogels with FeSe/Carbon interface for efficient and long-life sodium storage. Carbon, 2019, 143, 106-115. Single-crystalline (FeXNI1-X)2P nanosheets with dominant <mml:math< td=""><td>5.4</td><td>78</td></mml:math<>	5.4	78
46	xmins:mml="http://www.w3.org/1998/Math/MathML" altimg="slob03.gif" overflow="scroll"> <mml:mrow><mml:mo stretchy="false">{<mml:mi>01</mml:mi><mml:mover accent="true"><mml:mi mathvariant="bold">1<mml:mo>A^</mml:mo></mml:mi </mml:mover><td>8.2</td><td>68</td></mml:mo </mml:mrow>	8.2	68
47	accent="true"> <mml:mo></mml:mo>	3.9	32
48	High-efficient energy recovery from organics degradation for neutral wastewater treatment based on radicals catalytic reaction of Fe2+/Fe3+-EDTA complexes. Chemosphere, 2018, 201, 59-65.	4.2	24
49	Porous CoP nanostructure electrocatalyst derived from DUT-58 for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 13904-13910.	3.8	32
50	Nanoscale engineering MoP/Fe2P/RGO toward efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 13939-13945.	3.8	33
51	Highly Porous FeS/Carbon Fibers Derived from Fe-Carrageenan Biomass: High-capacity and Durable Anodes for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 17175-17182.	4.0	114
52	Generating lithium vacancies through delithiation of Li(NixCoyMnz)O2 towards bifunctional electrocatalysts for rechargeable zinc-air batteries. Energy Storage Materials, 2018, 15, 202-208.	9.5	21
53	Fabrication and electrochemical study of ruthenium-ruthenium oxide/activated carbon nanocomposites for enhanced energy storage. Journal of Alloys and Compounds, 2018, 751, 138-147.	2.8	27
54	Nanoconfinement of red phosphorus nanoparticles in seaweed-derived hierarchical porous carbonaceous fibers for enhanced lithium ion storage. Chemical Engineering Journal, 2018, 345, 604-610.	6.6	50

#	Article	IF	CITATIONS
55	Cellulose nanocrystals (CNC) derived Mo2C@sulfur-doped carbon aerogels for hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 13720-13726.	3.8	50
56	Exhaustive Conversion of Inorganic Nitrogen to Nitrogen Gas Based on a Photoelectro-Chlorine Cycle Reaction and a Highly Selective Nitrogen Gas Generation Cathode. Environmental Science & Technology, 2018, 52, 1413-1420.	4.6	87
57	Electronic Structure Tuning in Ni ₃ FeN/r-GO Aerogel toward Bifunctional Electrocatalyst for Overall Water Splitting. ACS Nano, 2018, 12, 245-253.	7.3	462
58	Boosting hydrogen evolution <i>via</i> optimized hydrogen adsorption at the interface of CoP ₃ and Ni ₂ P. Journal of Materials Chemistry A, 2018, 6, 5560-5565.	5.2	107
59	Triggering superior sodium ion adsorption on (2 0 0) facet of mesoporous WO3 nanosheet arrays for enhanced supercapacitance. Chemical Engineering Journal, 2018, 345, 165-173.	6.6	39
60	BiVO4 Photoanode with Exposed (040) Facets for Enhanced Photoelectrochemical Performance. Nano-Micro Letters, 2018, 10, 11.	14.4	58
61	DUTâ€58 (Co) Derived Synthesis of Co Clusters as Efficient Oxygen Reduction Electrocatalyst for Zinc–Air Battery. Global Challenges, 2018, 2, 1700086.	1.8	13
62	Direct Interfacial Growth of MnO ₂ Nanostructure on Hierarchically Porous Carbon for High-Performance Asymmetric Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 633-641.	3.2	113
63	Significant Enhancement of the Photoelectrochemical Activity of CuWO ₄ by using a Cobalt Phosphate Nanoscale Thin Film. ChemElectroChem, 2018, 5, 523-530.	1.7	25
64	Boosting Sodium-Ion Storage by Encapsulating NiS (CoS) Hollow Nanoparticles into Carbonaceous Fibers. ACS Applied Materials & Interfaces, 2018, 10, 40531-40539.	4.0	62
65	Subâ€1.5 nm Ultrathin CoP Nanosheet Aerogel: Efficient Electrocatalyst for Hydrogen Evolution Reaction at All pH Values. Small, 2018, 14, e1802824.	5.2	99
66	"Floating―cathode for efficient H2O2 electrogeneration applied to degradation of ibuprofen as a model pollutant. Electrochemistry Communications, 2018, 96, 37-41.	2.3	42
67	Serial hole transfer layers for a BiVO ₄ photoanode with enhanced photoelectrochemical water splitting. Nanoscale, 2018, 10, 18378-18386.	2.8	44
68	Electron blocking and hole extraction by a dual-function layer for hematite with enhanced photoelectrocatalytic performance. Applied Catalysis B: Environmental, 2018, 237, 175-184.	10.8	23
69	Efficient bacterial disinfection based on an integrated nanoporous titanium dioxide and ruthenium oxide bifunctional approach. Journal of Hazardous Materials, 2018, 356, 73-81.	6.5	17
70	Turning gelidium amansii residue into nitrogen-doped carbon nanofiber aerogel for enhanced multiple energy storage. Carbon, 2018, 137, 31-40.	5.4	48
71	Alginate/r-GO assisted synthesis of ultrathin LiFePO4 nanosheets with oriented (0 1 0) facet and ultralow antisite defect. Chemical Engineering Journal, 2018, 351, 340-347.	6.6	37
72	Selective Capture of Toxic Selenite Anions by Bismuthâ€based Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 13197-13201.	7.2	122

#	Article	IF	CITATIONS
73	Total organic carbon and total nitrogen removal and simultaneous electricity generation for nitrogen-containing wastewater based on the catalytic reactions of hydroxyl and chlorine radicals. Applied Catalysis B: Environmental, 2018, 238, 168-176.	10.8	58
74	Surface modification of hematite photoanode by NiFe layered double hydroxide for boosting photoelectrocatalytic water oxidation. Journal of Alloys and Compounds, 2018, 764, 341-346.	2.8	38
75	SnO ₂ @PANI Core–Shell Nanorod Arrays on 3D Graphite Foam: A High-Performance Integrated Electrode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 9620-9629.	4.0	78
76	Nanoscale engineering of nitrogen-doped carbon nanofiber aerogels for enhanced lithium ion storage. Journal of Materials Chemistry A, 2017, 5, 8247-8254.	5.2	114
77	Highly stable supercapacitors with MOF-derived Co ₉ S ₈ /carbon electrodes for high rate electrochemical energy storage. Journal of Materials Chemistry A, 2017, 5, 12453-12461.	5.2	180
78	Tuning the Shell Number of Multishelled Metal Oxide Hollow Fibers for Optimized Lithium-Ion Storage. ACS Nano, 2017, 11, 6186-6193.	7.3	127
79	Porous TiO ₂ Nanotubes with Spatially Separated Platinum and CoO _x Cocatalysts Produced by Atomic Layer Deposition for Photocatalytic Hydrogen Production. Angewandte Chemie - International Edition, 2017, 56, 816-820.	7.2	293
80	Dramatic enhancement of organics degradation and electricity generation via strengthening superoxide radical by using a novel 3D AQS/PPy-GF cathode. Water Research, 2017, 125, 259-269.	5.3	53
81	SnO ₂ /SnS ₂ nanotubes for flexible room-temperature NH ₃ gas sensors. RSC Advances, 2017, 7, 52503-52509.	1.7	98
82	Toward Aerogel Electrodes of Superior Rate Performance in Supercapacitors through Engineered Hollow Nanoparticles of NiCo ₂ O ₄ . Advanced Science, 2017, 4, 1700345.	5.6	45
83	Preparation of hematite with an ultrathin iron titanate layer via an in situ reaction and its stable, long-lived, and excellent photoelectrochemical performance. Applied Catalysis B: Environmental, 2017, 218, 690-699.	10.8	21
84	Highly Efficient Gas Sensor Using a Hollow SnO ₂ Microfiber for Triethylamine Detection. ACS Sensors, 2017, 2, 897-902.	4.0	238
85	Enhanced organic pollutants degradation and electricity production simultaneously via strengthening the radicals reaction in a novel Fenton-photocatalytic fuel cell system. Water Research, 2017, 108, 293-300.	5.3	84
86	Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions. Chemistry - A European Journal, 2016, 22, 8438-8443.	1.7	31
87	Facile Synthesis of Mesocrystalline SnO ₂ Nanorods on Reduced Graphene Oxide Sheets: An Appealing Multifunctional Affinity Probe for Sequential Enrichment of Endogenous Peptides and Phosphopeptides. ACS Applied Materials & Interfaces, 2016, 8, 35099-35105.	4.0	21
88	Suppressing Fe–Li Antisite Defects in LiFePO ₄ /Carbon Hybrid Microtube to Enhance the Lithium Ion Storage. Advanced Energy Materials, 2016, 6, 1601549.	10.2	109
89	Tailoring Pt–Fe ₂ O ₃ Interfaces for Selective Reductive Coupling Reaction To Synthesize Imine. ACS Catalysis, 2016, 6, 6560-6566.	5.5	64
90	Proliferaâ€Greenâ€Tide as Sustainable Source for Carbonaceous Aerogels with Hierarchical Pore to Achieve Multiple Energy Storage. Advanced Functional Materials, 2016, 26, 8487-8495.	7.8	169

#	Article	IF	CITATIONS
91	Mesoporous NiCo ₂ O ₄ Nanoplates on Three-Dimensional Graphene Foam as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 28274-28282.	4.0	100
92	Nanostructured materials for water splitting - state of the art and future needs: A mini-review. Electrochemistry Communications, 2016, 63, 10-17.	2.3	126
93	Robust α-Fe ₂ O ₃ nanorod arrays with optimized interstices as high-performance 3D anodes for high-rate lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 13377-13383.	5.2	46
94	Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life. Energy and Environmental Science, 2014, 7, 1924.	15.6	252
95	Branched CNT@SnO ₂ nanorods@carbon hierarchical heterostructures for lithium ion batteries with high reversibility and rate capability. Journal of Materials Chemistry A, 2014, 2, 15582-15589.	5.2	83
96	Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with superior rate performance. Nano Research, 2013, 6, 243-252.	5.8	93
97	Functionalization of TiO2 nanotubes with palladium nanoparticles for hydrogen sorption and storage. International Journal of Hydrogen Energy, 2013, 38, 14002-14009.	3.8	24
98	Bioinspired Oxidative Aromatizations: One-Pot Syntheses of 2-Substituted Benzothiazoles and Pyridines by Aerobic Organocatalysis. ACS Sustainable Chemistry and Engineering, 2013, 1, 1045-1051.	3.2	42
99	Electrocatalytic Activity of PtAu Nanoparticles Deposited on TiO ₂ Nanotubes. Journal of Physical Chemistry C, 2012, 116, 3298-3304.	1.5	52
100	Aerobic Organocatalytic Oxidation of Aryl Aldehydes: Flavin Catalyst Turnover by Hantzsch's Ester. Organic Letters, 2012, 14, 5150-5153.	2.4	73
101	Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO2 nanorod arrays. Energy and Environmental Science, 2012, 5, 7575.	15.6	122
102	Organocatalytic Dakin Oxidation by Nucleophilic Flavin Catalysts. Organic Letters, 2012, 14, 2806-2809.	2.4	72
103	Nanoporous Anatase TiO ₂ Mesocrystals: Additive-Free Synthesis, Remarkable Crystalline-Phase Stability, and Improved Lithium Insertion Behavior. Journal of the American Chemical Society, 2011, 133, 933-940.	6.6	598
104	Significant enhancement of the photoelectrochemical activity of TiO2 nanotubes. Electrochemistry Communications, 2011, 13, 1186-1189.	2.3	17
105	Determination of Chemical Oxygen Demand Based on Novel Photoelectroâ€bifunctional Electrodes. Electroanalysis, 2011, 23, 1267-1275.	1.5	25
106	Synthesis and electrochemical study of TiO2-supported PdAu nanoparticles. Electrochemistry Communications, 2011, 13, 370-373.	2.3	29
107	Synthesis and electrochemical study of nanoporous Pd–Ag alloys for hydrogen sorption. Electrochimica Acta, 2010, 56, 61-67.	2.6	31
108	High-Performance Pd-Based Hydrogen Spillover Catalysts for Hydrogen Storage. Journal of Physical Chemistry C, 2010, 114, 19875-19882.	1.5	84