
Zhongdi Chu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1163495/publications.pdf Version: 2024-02-01

7номері Сні

#	Article	IF	CITATIONS
1	Quantifying Microvascular Density and Morphology in Diabetic Retinopathy Using Spectral-Domain Optical Coherence Tomography Angiography. , 2016, 57, OCT362.		408
2	Quantitative assessment of the retinal microvasculature using optical coherence tomography angiography. Journal of Biomedical Optics, 2016, 21, 066008.	2.6	225
3	A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography. , 2018, 59, 203.		219
4	Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization. , 2017, 58, 1499.		178
5	Quantifying Retinal Microvascular Changes in Uveitis Using Spectral-Domain Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 2016, 171, 101-112.	3.3	140
6	Age-dependent Changes in the Macular Choriocapillaris of Normal Eyes Imaged With Swept-Source Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 2019, 200, 110-122.	3.3	108
7	Automated Quantitation of Choroidal Neovascularization: A Comparison Study Between Spectral-Domain and Swept-Source OCT Angiograms. , 2017, 58, 1506.		95
8	Correlations between Choriocapillaris Flow Deficits around Geographic Atrophy and Enlargement Rates Based on Swept-Source OCT Imaging. Ophthalmology Retina, 2019, 3, 478-488.	2.4	90
9	Age-Related Changes in Choroidal Thickness and the Volume of Vessels and Stroma Using Swept-Source OCT and Fully Automated Algorithms. Ophthalmology Retina, 2020, 4, 204-215.	2.4	86
10	Quantitative microvascular analysis of retinal venous occlusions by spectral domain optical coherence tomography angiography. PLoS ONE, 2017, 12, e0176404.	2.5	79
11	Quantification of Choriocapillaris with Phansalkar Local Thresholding: Pitfalls to Avoid. American Journal of Ophthalmology, 2020, 213, 161-176.	3.3	74
12	Guidelines for Imaging the Choriocapillaris Using OCT Angiography. American Journal of Ophthalmology, 2021, 222, 92-101.	3.3	72
13	Accurate estimation of choriocapillaris flow deficits beyond normal intercapillary spacing with swept source OCT angiography. Quantitative Imaging in Medicine and Surgery, 2018, 8, 658-666.	2.0	69
14	Ultra-wide optical coherence tomography angiography in diabetic retinopathy. Quantitative Imaging in Medicine and Surgery, 2018, 8, 743-753.	2.0	65
15	Quantification of Choriocapillaris with Optical Coherence Tomography Angiography: A Comparison Study. American Journal of Ophthalmology, 2019, 208, 111-123.	3.3	64
16	Suspended Scattering Particles in Motion: A Novel Feature of OCT Angiography in Exudative Maculopathies. Ophthalmology Retina, 2018, 2, 694-702.	2.4	56
17	Attenuation correction assisted automatic segmentation for assessing choroidal thickness and vasculature with swept-source OCT. Biomedical Optics Express, 2018, 9, 6067.	2.9	56
18	Microvascular Changes in the Choriocapillaris of Diabetic Patients Without Retinopathy Investigated by Swept-Source OCT Angiography. , 2020, 61, 50.		51

ZHONGDI CHU

#	Article	IF	CITATIONS
19	Improving visualization and quantitative assessment of choriocapillaris with swept source OCTA through registration and averaging applicable to clinical systems. Scientific Reports, 2018, 8, 16826.	3.3	46
20	Structural and Functional Associations of Macular Microcirculation in the Ganglion Cell-Inner Plexiform Layer in Glaucoma Using Optical Coherence Tomography Angiography. Journal of Glaucoma, 2018, 27, 281-290.	1.6	44
21	Correlations Between Choriocapillaris and Choroidal Measurements and the Growth of Geographic Atrophy Using Swept Source OCT Imaging. American Journal of Ophthalmology, 2021, 224, 321-331.	3.3	40
22	Use of En Face Swept-Source Optical Coherence Tomography Angiography in Identifying Choroidal Flow Voids in 3 Patients With Birdshot Chorioretinopathy. JAMA Ophthalmology, 2018, 136, 1288.	2.5	35
23	Diagnostic Performance of Macular Versus Peripapillary Vessel Parameters by Optical Coherence Tomography Angiography for Glaucoma. Translational Vision Science and Technology, 2018, 7, 21.	2.2	34
24	Peripapillary microvasculature in the retinal nerve fiber layer in glaucoma by optical coherence tomography angiography: focal structural and functional correlations and diagnostic performance. Clinical Ophthalmology, 2018, Volume 12, 2285-2296.	1.8	34
25	Swept-Source OCT Angiography of Serpiginous Choroiditis. Ophthalmology Retina, 2018, 2, 712-719.	2.4	33
26	Systemic Determinants of Peripapillary Vessel Density in Healthy African Americans: The African American Eye Disease Study. American Journal of Ophthalmology, 2019, 207, 240-247.	3.3	31
27	Impaired Retinal Vascular Reactivity in Diabetic Retinopathy as Assessed by Optical Coherence Tomography Angiography. , 2019, 60, 2468.		27
28	Intrasession repeatability and intersession reproducibility of peripapillary OCTA vessel parameters in non-glaucomatous and glaucomatous eyes. British Journal of Ophthalmology, 2021, 105, 1534-1541.	3.9	24
29	Repeatability and Reproducibility of Quantitative Assessment of the Retinal Microvasculature Using Optical Coherence Tomography Angiography Based on Optical Microangiography. Biomedical and Environmental Sciences, 2018, 31, 407-412.	0.2	22
30	Effect of Scan Size on Glaucoma Diagnostic Performance Using OCT Angiography En Face Images of the Radial Peripapillary Capillaries. Journal of Glaucoma, 2019, 28, 465-472.	1.6	20
31	Impact of ocular magnification on retinal and choriocapillaris blood flow quantification in myopia with swept-source optical coherence tomography angiography. Quantitative Imaging in Medicine and Surgery, 2020, 11, 948-956.	2.0	20
32	Quantifying choriocapillaris flow deficits using global and localized thresholding methods: a correlation study. Quantitative Imaging in Medicine and Surgery, 2018, 8, 1102-1112.	2.0	19
33	Correlating Changes in the Macular Microvasculature and Capillary Network to Peripheral Vascular Pathologic Features in Familial Exudative Vitreoretinopathy. Ophthalmology Retina, 2019, 3, 597-606.	2.4	19
34	Correlations Between Different Choriocapillaris Flow Deficit Parameters in Normal Eyes Using Swept Source OCT Angiography. American Journal of Ophthalmology, 2020, 209, 18-26.	3.3	19
35	Quantitative Analysis of the Choriocapillaris in Uveitis Using En Face Swept-Source Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 2020, 218, 17-27.	3.3	19
36	Comparison of Neovascular Lesion Area Measurements From Different Swept-Source OCT Angiographic Scan Patterns in Age-Related Macular Degeneration. , 2017, 58, 5098.		18

ZHONGDI CHU

#	Article	IF	CITATIONS
37	Complex signal-based optical coherence tomography angiography enables in vivo visualization of choriocapillaris in human choroid. Journal of Biomedical Optics, 2017, 22, 1.	2.6	18
38	Quantitative assessment of choriocapillaris flow deficits in diabetic retinopathy: A swept-source optical coherence tomography angiography study. PLoS ONE, 2020, 15, e0243830.	2.5	18
39	Ocular Determinants of Peripapillary Vessel Density in Healthy African Americans: The African American Eye Disease Study. , 2019, 60, 3368.		17
40	Vision Loss in Optic Disc Drusen Correlates With Increased Macular Vessel Diameter and Flux and Reduced Peripapillary Vascular Density. American Journal of Ophthalmology, 2020, 218, 214-224.	3.3	17
41	Optical Coherence Tomography Measurements of the Retinal Pigment Epithelium to Bruch Membrane Thickness Around Geographic Atrophy Correlate With Growth. American Journal of Ophthalmology, 2022, 236, 249-260.	3.3	17
42	Automatic geographic atrophy segmentation using optical attenuation in OCT scans with deep learning. Biomedical Optics Express, 2022, 13, 1328.	2.9	17
43	Swept-Source OCT Angiographic Characteristics of Treatment-NaÃ ⁻ ve Nonexudative Macular Neovascularization in AMD Prior to Exudation. , 2021, 62, 14.		16
44	Visualizing choriocapillaris using swept-source optical coherence tomography angiography with various probe beam sizes. Biomedical Optics Express, 2019, 10, 2847.	2.9	15
45	Validation of a Compensation Strategy Used to Detect Choriocapillaris Flow Deficits Under Drusen With Swept Source OCT Angiography. American Journal of Ophthalmology, 2020, 220, 115-127.	3.3	13
46	Optical Coherence Tomography Angiography–Derived Flux As a Measure of Physiological Changes in Retinal Capillary Blood Flow. Translational Vision Science and Technology, 2021, 10, 5.	2.2	12
47	Quantifying Subclinical and Longitudinal Microvascular Changes Following Episcleral Plaque Brachytherapy Using Spectral Domain–Optical Coherence Tomography Angiography. Journal of Vitreoretinal Diseases, 2020, 4, 499-508.	0.7	11
48	Impaired layer specific retinal vascular reactivity among diabetic subjects. PLoS ONE, 2020, 15, e0233871.	2.5	11
49	Analysis of correlations between local geographic atrophy growth rates and local OCT angiography-measured choriocapillaris flow deficits. Biomedical Optics Express, 2021, 12, 4573.	2.9	11
50	Robust three-dimensional registration on optical coherence tomography angiography for speckle reduction and visualization. Quantitative Imaging in Medicine and Surgery, 2020, 11, 879-894.	2.0	11
51	PARACENTRAL ACUTE MIDDLE MACULOPATHY ASSOCIATED WITH BILATERAL OPTIC DISK SWELLING AND MENINGITIS. Retinal Cases and Brief Reports, 2020, 14, 157-162.	0.6	10
52	Hemiretinal Asymmetry in Peripapillary Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes. American Journal of Ophthalmology, 2021, 230, 156-165.	3.3	8
53	Abnormal retinal capillary blood flow in autosomal dominant Alzheimer's disease. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13, e12162.	2.4	7
54	Topographic Quadrant Analysis of Peripapillary Superficial Microvasculature in Optic Disc Drusen. Frontiers in Neurology, 2021, 12, 666359.	2.4	7

ZHONGDI CHU

#	Article	IF	CITATIONS
55	Steps to Measurement Floor of an Optical Microangiography Device in Glaucoma. American Journal of Ophthalmology, 2021, 231, 58-69.	3.3	7
56	Swept source OCTA reveals a link between choriocapillaris blood flow and vision loss in a case of tubercular serpiginous-like choroiditis. American Journal of Ophthalmology Case Reports, 2021, 21, 101018.	0.7	6
57	Utility of optical coherence tomography angiography in detecting glaucomatous damage in a uveitic patient with disc congestion: A case report. American Journal of Ophthalmology Case Reports, 2017, 8, 78-83.	0.7	5
58	Clinical Utility of Triplicate En Face Image Averaging for Optical Coherence Tomography Angiography in Glaucoma and Glaucoma Suspects. Journal of Glaucoma, 2020, 29, 823-830.	1.6	5
59	Ocular and systemic determinants of perifoveal and macular vessel parameters in healthy African Americans. British Journal of Ophthalmology, 2021, , bjophthalmol-2021-319675.	3.9	5
60	Capillary density and caliber as assessed by optical coherence tomography angiography may be significant predictors of diabetic retinopathy severity. PLoS ONE, 2022, 17, e0262996.	2.5	5
61	Macular microvascular parameters in the ganglion cell-inner plexiform layer derived by optical coherence tomography angiography: Vascular structure-central visual function analysis. PLoS ONE, 2020, 15, e0240111.	2.5	4
62	Longer Axial Length Potentiates Relationship of Intraocular Pressure and Peripapillary Vessel Density in Glaucoma Patients. , 2021, 62, 37.		4
63	Automated Quantification of Choriocapillaris Lesion Area in Patients With Posterior Uveitis. American Journal of Ophthalmology, 2021, 231, 179-193.	3.3	4
64	Peripapillary and Macular Microcirculation in Glaucoma Patients of African and European Descent Using Optical Coherence Tomography Angiography. Journal of Glaucoma, 2020, 29, 885-889.	1.6	3
65	Intrasession Repeatability and Intersession Reproducibility of Macular Vessel Parameters on Optical Coherence Tomography Angiography in Glaucomatous and Non-Glaucomatous Eyes. Current Eye Research, 2022, 47, 1068-1076.	1.5	3
66	Swept-Source Optical Coherence Tomography Detection of Bruch's Membrane and Choriocapillaris Abnormalities in Sorsby Macular Dystrophy. Retina, 2022, Publish Ahead of Print, .	1.7	3
67	Wide field OCT angiography by using swept source OCT in living human eye. , 2017, , .		1