Johan Grievink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11632853/publications.pdf

Version: 2024-02-01

687363 794594 22 668 13 19 citations h-index g-index papers 24 24 24 668 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A systems engineering perspective on process integration in industrial biotechnology. Journal of Chemical Technology and Biotechnology, 2015, 90, 349-355.	3.2	60
2	Reliability Integration to Process Synthesis applied to GTL Processes. Computer Aided Chemical Engineering, 2014, 33, 79-84.	0.5	0
3	A kinetic modelling study of ethane cracking for optimal ethylene yield. Chemical Engineering Research and Design, 2013, 91, 1106-1110.	5.6	29
4	Development of a synthesis tool for Gas-To-Liquid complexes. Computers and Chemical Engineering, 2012, 42, 2-14.	3.8	22
5	Model-based, thermo-physical optimisation for high olefin yield in steam cracking reactors. Chemical Engineering Research and Design, 2010, 88, 1305-1319.	5.6	18
6	Application of generic principles of process intensification to solution crystallization enabled by a task-based design approach. Chemical Engineering and Processing: Process Intensification, 2010, 49, 979-991.	3.6	20
7	Membrane assisted crystallization using reverse osmosis: Influence of solubility characteristics on experimental application and energy saving potential. Chemical Engineering Science, 2010, 65, 2689-2699.	3.8	33
8	The application of a task-based concept for the design of innovative industrial crystallizers. Computers and Chemical Engineering, 2009, 33, 1692-1700.	3.8	11
9	Characterization and Dynamic Optimization of Membrane-Assisted Crystallization of Adipic Acid. Industrial & Engineering Chemistry Research, 2009, 48, 5360-5369.	3.7	40
10	Process intensification and process systems engineering: A friendly symbiosis. Computers and Chemical Engineering, 2008, 32, 3-11.	3.8	168
11	A Task-Based Synthesis Approach toward the Design of Industrial Crystallization Process Units. Industrial & Design Chemistry Research, 2007, 46, 3979-3996.	3.7	12
12	Ideal Chemical Conversion Concept for the Industrial Production of Ethene from Hydrocarbons. Industrial & Engineering Chemistry Research, 2007, 46, 4045-4062.	3.7	13
13	Nonlinear approach to design of monolithic loop reactor for fischer-tropsch synthesis. Computer Aided Chemical Engineering, 2005, , 769-774.	0.5	O
14	Thermodynamic controllability assessment in process synthesis. Computer Aided Chemical Engineering, 2004, , 146-167.	0.5	1
15	Process design and control structure evaluation and screening using nonlinear sensitivity analysis. Computer Aided Chemical Engineering, 2004, 17, 326-351.	0.5	24
16	Is a monolithic loop reactor a viable option for Fischer–Tropsch synthesis?. Chemical Engineering Science, 2003, 58, 583-591.	3.8	60
17	Synthesis of large-scale models: Theory and implementation in an industrial case. Computer Aided Chemical Engineering, 2002, 10, 955-960.	0.5	1
18	A post-graduate study in Process Design: An Innovative Model in the Netherlands. Computer Aided Chemical Engineering, 2002, 10, 1015-1020.	0.5	0

#	Article	IF	CITATIONS
19	Optimal Design and Sensitivity Analysis of Reactive Distillation Units Using Collocation Models. Industrial & Engineering Chemistry Research, 2001, 40, 1673-1685.	3.7	53
20	Process design and control structure screening based on economic and static controllability criteria. Computers and Chemical Engineering, 2001, 25, 177-188.	3.8	46
21	A priori analysis of metabolic flux identifiability from 13C-labeling data. Biotechnology and Bioengineering, 2001, 74, 505-516.	3.3	53
22	Reactive Distillation: On the Development of an Integrated Design Methodology. Chemie-Ingenieur-Technik, 2001, 73, 777-777.	0.8	1