K A Shiral Fernando

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11631553/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. Journal of the American Chemical Society, 2006, 128, 7756-7757.	6.6	4,049
2	Advances toward bioapplications of carbon nanotubes. Journal of Materials Chemistry, 2004, 14, 527.	6.7	827
3	Graphene Oxide: A Nonspecific Enhancer of Cellular Growth. ACS Nano, 2011, 5, 8100-8107.	7.3	630
4	Carbon Quantum Dots and Applications in Photocatalytic Energy Conversion. ACS Applied Materials & Interfaces, 2015, 7, 8363-8376.	4.0	613
5	Carbon Nanoparticles as Visible-Light Photocatalysts for Efficient CO ₂ Conversion and Beyond. Journal of the American Chemical Society, 2011, 133, 4754-4757.	6.6	546
6	Selective Interactions of Porphyrins with Semiconducting Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2004, 126, 1014-1015.	6.6	426
7	Polymeric Carbon Nanocomposites from Carbon Nanotubes Functionalized with Matrix Polymer. Macromolecules, 2003, 36, 7199-7204.	2.2	423
8	Covalently PEGylated Carbon Nanotubes with Stealth Character In Vivo. Small, 2008, 4, 940-944.	5.2	153
9	Metallic Single-Walled Carbon Nanotubes for Conductive Nanocomposites. Journal of the American Chemical Society, 2008, 130, 1415-1419.	6.6	143
10	Reversible Accumulation of PEGylated Single-Walled Carbon Nanotubes in the Mammalian Nucleus. ACS Nano, 2008, 2, 2085-2094.	7.3	134
11	Functionalized carbon nanoparticles: Syntheses and applications in optical bioimaging and energy conversion. Coordination Chemistry Reviews, 2016, 320-321, 66-81.	9.5	122
12	High Aqueous Solubility of Functionalized Single-Walled Carbon Nanotubes. Langmuir, 2004, 20, 4777-4778.	1.6	119
13	Diminished Band-Gap Transitions of Single-Walled Carbon Nanotubes in Complexation with Aromatic Molecules. Journal of the American Chemical Society, 2004, 126, 10234-10235.	6.6	101
14	Characteristic Excitation Wavelength Dependence of Fluorescence Emissions in Carbon "Quantum― Dots. Journal of Physical Chemistry C, 2017, 121, 28180-28186.	1.5	93
15	Efficient Fluorescence Quenching in Carbon Dots by Surface-Doped Metals - Disruption of Excited State Redox Processes and Mechanistic Implications. Langmuir, 2012, 28, 16141-16147.	1.6	86
16	Sonochemically Assisted Thermal Decomposition of Alane <i>N,N</i> -Dimethylethylamine with Titanium (IV) Isopropoxide in the Presence of Oleic Acid to Yield Air-Stable and Size-Selective Aluminum Coreâ^'Shell Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 500-503.	1.5	74
17	Enhanced fluorescence properties of carbon dots in polymer films. Journal of Materials Chemistry C, 2016, 4, 6967-6974.	2.7	74
18	Visible-Light Photoconversion of Carbon Dioxide into Organic Acids in an Aqueous Solution of Carbon Dots. Langmuir, 2014, 30, 8631-8636.	1.6	67

K A SHIRAL FERNANDO

#	Article	IF	CITATIONS
19	NMR Detection of Single-Walled Carbon Nanotubes in Solution. Journal of the American Chemical Society, 2005, 127, 7517-7520.	6.6	66
20	Functionalization of Carbon Nanoparticles and Defunctionalization—Toward Structural and Mechanistic Elucidation of Carbon "Quantum―Dots. Journal of Physical Chemistry C, 2016, 120, 25604-25611.	1.5	60
21	Spontaneous Hydrogen Generation from Organic-Capped Al Nanoparticles and Water. ACS Applied Materials & Interfaces, 2010, 2, 11-14.	4.0	58
22	Multispectroscopic (FTIR, XPS, and TOFMSâ^'TPD) Investigation of the Coreâ^'Shell Bonding in Sonochemically Prepared Aluminum Nanoparticles Capped with Oleic Acid. Journal of Physical Chemistry C, 2010, 114, 6377-6380.	1.5	57
23	Carbon dots for energy conversion applications. Journal of Applied Physics, 2019, 125, .	1.1	46
24	Luminescence Polarization Spectroscopy Study of Functionalized Carbon Nanotubes in a Polymeric Matrix. Journal of Physical Chemistry B, 2006, 110, 3001-3006.	1.2	38
25	Magnetotransport in transparent single-wall carbon nanotube networks. Physical Review B, 2007, 76, .	1.1	34
26	Poly(ethylene-<1>co 1 -vinyl alcohol) Functionalized Single-Walled Carbon Nanotubes and Related Nanocomposites. Journal of Nanoscience and Nanotechnology, 2005, 5, 1050-1054.	0.9	20
27	Noncovalent Interactions of Derivatized Pyrenes with Metallic and Semiconducting Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 11010-11015.	1.5	16
28	Migration of Silver Nanoparticles from Silver Decorated Graphene Oxide to Other Carbon Nanostructures. Langmuir, 2014, 30, 11776-11784.	1.6	16
29	Charge transport in transparent single-wall carbon nanotube networks. Journal of Physics Condensed Matter, 2007, 19, 446006.	0.7	15
30	Preparation and Characterization of Alane Complexes for Energy Applications. Journal of Physical Chemistry C, 2010, 114, 3318-3322.	1.5	12
31	Diameter-Selective Fractionation of HiPco Single-Walled Carbon Nanotubes in Repeated Functionalization Reactions. Journal of Physical Chemistry C, 2007, 111, 10254-10259.	1.5	11
32	Carbon–TiO ₂ hybrid dots in different configurations – optical properties, redox characteristics, and mechanistic implications. New Journal of Chemistry, 2018, 42, 10798-10806.	1.4	10