Lorenzo Marini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1163154/publications.pdf

Version: 2024-02-01

74163 66343 6,917 146 42 75 citations h-index g-index papers 150 150 150 7293 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019, 5, eaax0121.	10.3	524
2	Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870.	7.1	401
3	The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters, 2019, 22, 1083-1094.	6.4	364
4	The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecology Letters, 2020, 23, 1488-1498.	6.4	319
5	Insect pollination enhances seed yield, quality, and market value in oilseed rape. Oecologia, 2012, 169, 1025-1032.	2.0	215
6	Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography, 2017, 40, 1426-1435.	4.5	209
7	Vascular plant and Orthoptera diversity in relation to grassland management and landscape composition in the European Alps. Journal of Applied Ecology, 2008, 45, 361-370.	4.0	170
8	Climate affects severity and altitudinal distribution of outbreaks in an eruptive bark beetle. Climatic Change, 2012, 115, 327-341.	3.6	124
9	Effects of local factors on plant species richness and composition of Alpine meadows. Agriculture, Ecosystems and Environment, 2007, 119, 281-288.	5.3	123
10	Large-scale patterns of epiphytic lichen species richness: Photobiont-dependent response to climate and forest structure. Science of the Total Environment, 2011, 409, 4381-4386.	8.0	110
11	Mitigating the impacts of the decline of traditional farming on mountain landscapes and biodiversity: a case study in the European Alps. Environmental Science and Policy, 2011, 14, 258-267.	4.9	107
12	Impact of farm size and topography on plant and insect diversity of managed grasslands in the Alps. Biological Conservation, 2009, 142, 394-403.	4.1	105
13	Response of orthopteran diversity to abandonment of semi-natural meadows. Agriculture, Ecosystems and Environment, 2009, 132, 232-236.	5.3	101
14	Conservation tillage mitigates the negative effect of landscape simplification on biological control. Journal of Applied Ecology, 2016, 53, 233-241.	4.0	101
15	Human disturbance and upward expansion of plants in a warming climate. Nature Climate Change, 2017, 7, 577-580.	18.8	97
16	Agricultural management, vegetation traits and landscape drive orthopteran and butterfly diversity in a grassland–forest mosaic: a multiâ€scale approach. Insect Conservation and Diversity, 2009, 2, 213-220.	3.0	96
17	Contrasting response of native and alien plant species richness to environmental energy and human impact along alpine elevation gradients. Global Ecology and Biogeography, 2009, 18, 652-661.	5.8	88
18	Density of insectâ€pollinated grassland plants decreases with increasing surrounding landâ€use intensity. Ecology Letters, 2014, 17, 1168-1177.	6.4	87

#	Article	IF	CITATIONS
19	High cover of hedgerows in the landscape supports multiple ecosystem services in <scp>M</scp> editerranean cereal fields. Journal of Applied Ecology, 2017, 54, 380-388.	4.0	86
20	Improving the early detection of alien woodâ€boring beetles in ports and surrounding forests. Journal of Applied Ecology, 2015, 52, 50-58.	4.0	85
21	Extinction debt for plants and flowerâ€visiting insects in landscapes with contrasting land use history. Diversity and Distributions, 2014, 20, 591-599.	4.1	80
22	Hedgerow trees and extendedâ€width field margins enhance macroâ€moth diversity: implications for management. Journal of Applied Ecology, 2012, 49, 1396-1404.	4.0	79
23	Influence of tree age, tree size and crown structure on lichen communities in mature Alpine spruce forests. Biodiversity and Conservation, 2009, 18, 1509-1522.	2.6	77
24	Betaâ€diversity patterns elucidate mechanisms of alien plant invasion in mountains. Global Ecology and Biogeography, 2013, 22, 450-460.	5 . 8	74
25	Population dynamics of the spruce bark beetle: a longâ€term study. Oikos, 2013, 122, 1768-1776.	2.7	73
26	Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss. Diversity and Distributions, 2012, 18, 898-908.	4.1	70
27	Combined effects of agrochemicals and ecosystem services on crop yield across Europe. Ecology Letters, 2017, 20, 1427-1436.	6.4	70
28	Epiphytic lichen diversity along elevational gradients: biological traits reveal a complex response to water and energy. Journal of Biogeography, 2015, 42, 1222-1232.	3.0	69
29	Exploring associations between international trade and environmental factors with establishment patterns of exotic Scolytinae. Biological Invasions, 2011, 13, 2275-2288.	2.4	66
30	Alien and native plant lifeâ€forms respond differently to human and climate pressures. Global Ecology and Biogeography, 2012, 21, 534-544.	5.8	65
31	Crop management modifies the benefits of insect pollination in oilseed rape. Agriculture, Ecosystems and Environment, 2015, 207, 61-66.	5. 3	65
32	Disentangling effects of habitat diversity and area on orthopteran species with contrasting mobility. Biological Conservation, 2010, 143, 2164-2171.	4.1	63
33	Landscape context and elevation affect pollinator communities in intensive apple orchards. Basic and Applied Ecology, 2012, 13, 681-689.	2.7	63
34	Patterns of plant species richness in Alpine hay meadows: Local vs. landscape controls. Basic and Applied Ecology, 2008, 9, 365-372.	2.7	62
35	Pollination contribution to crop yield is often context-dependent: A review of experimental evidence. Agriculture, Ecosystems and Environment, 2019, 280, 16-23.	5. 3	62
36	Influence of forest management on epiphytic lichens in a temperate beech forest of northern Italy. Forest Ecology and Management, 2007, 247, 43-47.	3.2	59

#	Article	IF	Citations
37	Developing trapping protocols for wood-boring beetles associated with broadleaf trees. Journal of Pest Science, 2019, 92, 267-279.	3.7	59
38	Effects of smallâ€scale grassland fragmentation and frequent mowing on population density and species diversity of orthopterans: a longâ€term study. Ecological Entomology, 2009, 34, 321-329.	2.2	55
39	Additive partitioning of plant diversity with respect to grassland management regime, fertilisation and abiotic factors. Basic and Applied Ecology, 2008, 9, 626-634.	2.7	52
40	Epiphytic lichen diversity in old-growth and managed Picea abies stands in Alpine spruce forests. Forest Ecology and Management, 2010, 260, 603-609.	3.2	52
41	Organic Farming Benefits Local Plant Diversity in Vineyard Farms Located in Intensive Agricultural Landscapes. Environmental Management, 2012, 49, 1054-1060.	2.7	49
42	Testing scaleâ€dependent effects of seminatural habitats on farmland biodiversity. Ecological Applications, 2015, 25, 1681-1690.	3.8	48
43	Impact of urbanization on predator and parasitoid insects at multiple spatial scales. PLoS ONE, 2019, 14, e0214068.	2.5	47
44	A review of pest surveillance techniques for detecting quarantine pests in <scp>E</scp> urope. EPPO Bulletin, 2012, 42, 515-551.	0.8	46
45	Exploring anthropogenic and natural processes shaping fern species richness along elevational gradients. Journal of Biogeography, 2011, 38, 78-88.	3.0	42
46	Effects of climate and density-dependent factors on population dynamics of the pine processionary moth in the Southern Alps. Climatic Change, 2013, 121, 701-712.	3.6	41
47	Testing phenotypic trade-offs in the chemical defence strategy of Scots pine under growth-limiting field conditions. Tree Physiology, 2014, 34, 919-930.	3.1	41
48	Landscape composition predicts the distribution of Philaenus spumarius, vector of Xylella fastidiosa, in olive groves. Journal of Pest Science, 2019, 92, 1101-1109.	3.7	41
49	Spillover of <i>Drosophila suzukii</i> between noncrop and crop areas: implications for pest management. Agricultural and Forest Entomology, 2018, 20, 575-581.	1.3	40
50	Soil management shapes ecosystem service provision and trade-offs in agricultural landscapes. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161369.	2.6	38
51	Acquisition of fungi from the environment modifies ambrosia beetle mycobiome during invasion. PeerJ, 2019, 7, e8103.	2.0	37
52	Species–habitat networks: A tool to improve landscape management for conservation. Journal of Applied Ecology, 2019, 56, 923-928.	4.0	36
53	Habitat and climatic preferences drive invasions of non-native ambrosia beetles in deciduous temperate forests. Biological Invasions, 2016, 18, 2809-2821.	2.4	35
54	Habitat preference of Drosophila suzukii across heterogeneous landscapes. Journal of Pest Science, 2019, 92, 485-494.	3.7	35

#	Article	IF	CITATIONS
55	Organic farming enhances parasitoid diversity at the local and landscape scales. Journal of Applied Ecology, 2015, 52, 1102-1109.	4.0	34
56	Winter temperature predicts prolonged diapause in pine processionary moth species across their geographic range. Peerl, 2019, 7, e6530.	2.0	34
57	Oak forest exploitation and black-locust invasion caused severe shifts in epiphytic lichen communities in Northern Italy. Science of the Total Environment, 2010, 408, 5506-5512.	8.0	33
58	Management Intensity and Topography Determined Plant Diversity in Vineyards. PLoS ONE, 2013, 8, e76167.	2.5	33
59	Recovery of plant diversity in restored semiâ€natural pastures depends on adjacent land use. Applied Vegetation Science, 2015, 18, 413-422.	1.9	33
60	Semi-natural habitats boost Drosophila suzukii populations and crop damage in sweet cherry. Agriculture, Ecosystems and Environment, 2018, 257, 152-158.	5. 3	33
61	Influence of tree species on epiphytic macrolichens in temperate mixed forests of northern Italy. Canadian Journal of Forest Research, 2009, 39, 785-791.	1.7	32
62	Habitat of an endangered saproxylic beetle, <i>Osmoderma eremita </i> , in Mediterranean woodlands. Ecoscience, 2012, 19, 299-307.	1,4	31
63	Landscape composition affects parasitoid spillover. Agriculture, Ecosystems and Environment, 2015, 208, 48-54.	5. 3	31
64	Bark and Ambrosia Beetles Show Different Invasion Patterns in the USA. PLoS ONE, 2016, 11, e0158519.	2.5	31
65	Water–energy, landâ€cover and heterogeneity drivers of the distribution of plant species richness in a mountain region of the European Alps. Journal of Biogeography, 2008, 35, 1826-1839.	3.0	30
66	Contrasting effects of habitat area and connectivity on evenness of pollinator communities. Ecography, 2014, 37, 544-551.	4.5	30
67	Predator and parasitoid insects along elevational gradients: role of temperature and habitat diversity. Oecologia, 2018, 188, 193-202.	2.0	30
68	Species traits elucidate crop pest response to landscape composition: a global analysis. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202116.	2.6	30
69	Crop rotations sustain cereal yields under a changing climate. Environmental Research Letters, 2020, 15, 124011.	5.2	30
70	Interactive effects of area and connectivity on the diversity of tachinid parasitoids in highly fragmented landscapes. Landscape Ecology, 2014, 29, 879-889.	4.2	29
71	Landscape simplification weakens the association between terrestrial producer and consumer diversity in Europe. Global Change Biology, 2017, 23, 3040-3051.	9.5	28
72	Pollination benefits are maximized at intermediate nutrient levels. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170729.	2.6	27

#	Article	IF	CITATIONS
73	Empirical realised niche models for British higher and lower plants - development and preliminary testing. Journal of Vegetation Science, 2010, 21, 643.	2.2	25
74	Exotic plant invasion in agricultural landscapes: A matter of dispersal mode and disturbance intensity. Applied Vegetation Science, 2018, 21, 250-257.	1.9	25
75	Exploiting trap color to improve surveys of longhorn beetles. Journal of Pest Science, 2021, 94, 871-883.	3.7	25
76	Is the human population a largeâ€scale indicator of the species richness of ground beetles?. Animal Conservation, 2010, 13, 432-441.	2.9	24
77	Consistent population declines but idiosyncratic range shifts in Alpine orchids under global change. Nature Communications, 2020, 11, 5835.	12.8	24
78	Solar radiation directly affects larval performance of a forest insect. Ecological Entomology, 2013, 38, 553-559.	2.2	23
79	Exploring the role of wood waste landfills in early detection of non-native wood-boring beetles. Journal of Pest Science, 2015, 88, 563-572.	3.7	23
80	Density-dependence in the declining population of the monarch butterfly. Scientific Reports, 2017, 7, 13957.	3.3	23
81	Using species-habitat networks to inform agricultural landscape management for spiders. Biological Conservation, 2019, 239, 108275.	4.1	23
82	Drivers of lichen species richness at multiple spatial scales in temperate forests. Plant Ecology and Diversity, 2012, 5, 355-363.	2.4	21
83	Degradation of soil fertility can cancel pollination benefits in sunflower. Oecologia, 2016, 180, 581-587.	2.0	21
84	Above―and belowground insect herbivory modifies the response of a grassland plant community to nitrogen eutrophication. Ecology, 2017, 98, 545-554.	3.2	21
85	Species–habitat networks elucidate landscape effects on habitat specialisation of natural enemies and pollinators. Ecology Letters, 2021, 24, 288-297.	6.4	21
86	Impact of Stand and Landscape Management on Forest Pest Damage. Annual Review of Entomology, 2022, 67, 181-199.	11.8	21
87	Lichen diversity on stumps in relation to wood decay in subalpine forests of Northern Italy. Biodiversity and Conservation, 2008, 17, 2661-2670.	2.6	20
88	High mobility reduces betaâ€diversity among orthopteran communities – implications for conservation. Insect Conservation and Diversity, 2012, 5, 37-45.	3.0	20
89	Effect of Trap Color on Captures of Bark- and Wood-Boring Beetles (Coleoptera; Buprestidae and) Tj ETQq1 1 0	.784314 rg	BT_ Overlock
90	Lichen diversity of coarse woody habitats in a Pinus-Larix stand in the Italian Alps. Lichenologist, 2008, 40, 153-163.	0.8	19

#	Article	IF	Citations
91	Agricultural land-use in the surrounding landscape affects moorland bird diversity. Agriculture, Ecosystems and Environment, 2010, 139, 578-583.	5.3	19
92	Fungal pathogen and ethanol affect host selection and colonization success in ambrosia beetles. Agricultural and Forest Entomology, 2020, 22, 1-9.	1.3	19
93	Integrated management of Drosophila suzukii in sweet cherry orchards. Entomologia Generalis, 2020, 40, 297-305.	3.1	19
94	Do vineyards in contrasting landscapes contribute to conserve plant species of dry calcareous grasslands?. Science of the Total Environment, 2016, 545-546, 244-249.	8.0	18
95	Spillover of tachinids and hoverflies from different field margins. Basic and Applied Ecology, 2016, 17, 33-42.	2.7	17
96	Urban sprawl facilitates invasions of exotic plants across multiple spatial scales. Biological Invasions, 2022, 24, 1497-1510.	2.4	17
97	Early colonization of stone by freshwater lichens of restored habitats: A case study in northern Italy. Science of the Total Environment, 2009, 407, 5001-5006.	8.0	16
98	Ground Cover Management in Olive Groves Reduces Populations of <i>Philaenus spumarius</i> (Hemiptera: Aphrophoridae), Vector of <i>Xylella fastidiosa</i> Journal of Economic Entomology, 2021, 114, 1716-1721.	1.8	16
99	Vertical stratification of ichneumonid wasp communities: the effects of forest structure and lifeâ€history traits. Insect Science, 2015, 22, 688-699.	3.0	15
100	Coppicing and plant diversity in a lowland wood remnant in North–East Italy. Plant Biosystems, 2020, 154, 173-180.	1.6	15
101	Scale-dependence of the correlation between human population and the species richness of stream macro-invertebrates. Basic and Applied Ecology, 2010, 11, 272-280.	2.7	14
102	Assessment of hedge stand types as determinants of woody species richness in rural field margins. IForest, 2013, 6, 201-208.	1.4	14
103	Impact of an invasive herbivore and human trampling on lichen-rich dry grasslands: Soil-dependent response of multiple taxa. Science of the Total Environment, 2018, 639, 633-639.	8.0	14
104	Contrasting response of native and nonâ€native plants to disturbance and herbivory in mountain environments. Journal of Biogeography, 2021, 48, 1594-1605.	3.0	14
105	Freshwater lichens in springs of the eastern Italian Alps: floristics, ecology and potential for bioindication. Annales De Limnologie, 2007, 43, 285-292.	0.6	13
106	Influences of tree age and tree structure on the macrolichen <i>Letharia vulpina</i> : A case study in the Italian Alps. Ecoscience, 2008, 15, 423-428.	1.4	13
107	Seed predation intensity and stability in agro-ecosystems: Role of predator diversity and soil disturbance. Agriculture, Ecosystems and Environment, 2020, 288, 106720.	5.3	13
108	Distribution of <scp>N</scp> orway spruce bark and woodâ€boring beetles along <scp>A</scp> lpine elevational gradients. Agricultural and Forest Entomology, 2014, 16, 111-118.	1.3	12

#	Article	IF	Citations
109	Drought and soil fertility modify fertilization effects on aphid performance in wheat. Basic and Applied Ecology, 2018, 30, 23-31.	2.7	12
110	Could Hair-Lichens of High-Elevation Forests Help Detect the Impact of Global Change in the Alps?. Diversity, 2019, 11, 45.	1.7	12
111	Habitat loss and alien tree invasion reduce defoliation intensity of an eruptive forest pest. Forest Ecology and Management, 2019, 433, 497-503.	3.2	12
112	Cross-taxon congruence between predatory arthropods and plants across Mediterranean agricultural landscapes. Ecological Indicators, 2021, 123, 107366.	6.3	12
113	Epiphytic lichens in a riparian Natural Reserve of northern Italy: Species richness, composition and conservation. Plant Biosystems, 2008, 142, 94-98.	1.6	11
114	Biodiversity and conservation of terricolous lichens and bryophytes in continental lowlands of northern Italy: the role of different dry habitat types. Biodiversity and Conservation, 2020, 29, 3533-3550.	2.6	11
115	Hydrochemistry, water table depth and related distribution patterns of vascular plants in a mixed mire. Plant Biosystems, 2008, 142, 79-86.	1.6	10
116	Testing indicators of epiphytic lichen diversity: a case study in N Italy. Biodiversity and Conservation, 2007, 16, 3377-3383.	2.6	9
117	A multi-scale study of Orthoptera species richness and human population size controlling for sampling effort. Die Naturwissenschaften, 2010, 97, 265-271.	1.6	9
118	Positive regional species–people correlations: a sampling artefact or a key issue for sustainable development?. Animal Conservation, 2010, 13, 446-447.	2.9	9
119	Efficacy of Two Common Methods of Application of Residual Insecticide for Controlling the Asian Tiger Mosquito, Aedes albopictus (Skuse), in Urban Areas. PLoS ONE, 2015, 10, e0134831.	2.5	9
120	Conservation tillage reduces the negative impact of urbanisation on carabid communities. Insect Conservation and Diversity, 2016, 9, 438-445.	3.0	9
121	Establishment dynamics of native and exotic plants after disturbance along roadsides. Applied Vegetation Science, 2020, 23, 277-284.	1.9	8
122	Effect of reduction in sampling effort for monitoring epiphytic lichen diversity in forests. Community Ecology, 2010, 11, 250-256.	0.9	7
123	Plant health surveys for the EU territory: an analysis of data quality and methodologies and the resulting uncertainties for pest risk assessment (PERSEUS) CFP/EFSA/PLH/2010/01. EFSA Supporting Publications, 2014, 11, .	0.7	7
124	Environmental heterogeneity effects on predator and parasitoid insects vary across spatial scales and seasons: a multiâ€taxon approach. Insect Conservation and Diversity, 2017, 10, 462-471.	3.0	7
125	Oviposition site preference of <i>Barbitistes vicetinus</i> (Orthoptera, Tettigoniidae) during outbreaks. Agricultural and Forest Entomology, 2018, 20, 414-419.	1.3	7
126	Spatial synchrony in <i>Drosophila suzukii</i> population dynamics along elevational gradients. Ecological Entomology, 2019, 44, 182-189.	2.2	7

#	Article	IF	Citations
127	Role of abandoned grasslands in the conservation of spider communities across heterogeneous mountain landscapes. Agriculture, Ecosystems and Environment, 2021, 319, 107526.	5.3	7
128	Seasonality and Landscape Composition Drive the Diversity of Pollen Collected by Managed Honey Bees. Frontiers in Sustainable Food Systems, 2022, 6, .	3.9	7
129	Functional traits of plants and pollinators explain resource overlap between honeybees and wild pollinators. Oecologia, 2022, 198, 1019-1029.	2.0	7
130	Habitat type and community age as barriers to alien plant invasions in coastal species-habitat networks. Ecological Indicators, 2021, 133, 108450.	6.3	7
131	Epiphytic lichen vegetation onLarixin the Italian Alps. Plant Biosystems, 2006, 140, 132-137.	1.6	6
132	Contrasting effects of exotic plant invasions and managed honeybees on plant–flower visitor interactions. Diversity and Distributions, 2020, 26, 1397-1408.	4.1	6
133	Spatio-temporal dynamics of vectors of Xylella fastidiosa subsp. pauca across heterogeneous landscapes. Entomologia Generalis, 2022, 42, 515-521.	3.1	6
134	Impact of dairy farming on butterfly diversity in Alpine summer pastures. Agriculture, Ecosystems and Environment, 2016, 232, 38-45.	5.3	5
135	Soil pathogen-aphid interactions under differences in soil organic matter and mineral fertilizer. PLoS ONE, 2017, 12, e0179695.	2.5	5
136	Effect of insect herbivory on plant community dynamics under contrasting water availability levels. Journal of Ecology, 2018, 106, 1819-1828.	4.0	5
137	Improving insect conservation across heterogeneous landscapes using species–habitat networks. PeerJ, 2021, 9, e10563.	2.0	5
138	A list of methods to detect arthropod quarantine pests in Europe*. EPPO Bulletin, 2012, 42, 93-94.	0.8	4
139	Emergence phenology and temperature effect on the post-diapause egg development in the bush cricket <i>Barbitistes vicetinus</i> (Orthoptera, Tettigoniidae). Bulletin of Entomological Research, 2020, 110, 161-168.	1.0	4
140	Can extensively managed perennial crops serve as surrogate habitat for orthopterans typical of dry calcareous grasslands?. Agriculture, Ecosystems and Environment, 2021, 319, 107536.	5.3	3
141	Drought, nitrogen deposition and arthropod herbivory modify plant establishment dynamics after soil disturbance. Science of the Total Environment, 2021, 796, 148956.	8.0	3
142	The inclusion of overlooked lichen microhabitats in standardized forest biodiversity monitoring. Lichenologist, 2018, 50, 231-237.	0.8	2
143	Effects of natural pyrethrum and synthetic pyrethroids on the tiger mosquito, <i>Aedes albopictus</i> (skuse) and non-target flower-visiting insects in urban green areas of Padua, Italy. International Journal of Pest Management, 2020, 66, 215-221.	1.8	2
144	Effects of temperature and plant diversity on orthopterans and leafhoppers in calcareous dry grasslands. Journal of Insect Conservation, 2021, 25, 287-296.	1.4	2

#	Article	IF	CITATIONS
145	Increasing temperatures affect multiyear life cycle of the outbreak bushâ€cricket <i>Barbitistes vicetinus</i> (Orthoptera, Tettigoniidae). Insect Science, 2023, 30, 530-538.	3.0	2
146	Landscape simplification weakens the association between terrestrial producer and consumer diversity in Europe. , $2018, \ldots$		0