Jason R Maher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11631454/publications.pdf Version: 2024-02-01

INSON R MAHER

#	Article	IF	CITATIONS
1	Full depth measurement of tenofovir transport in rectal mucosa using confocal Raman spectroscopy and optical coherence tomography. Drug Delivery and Translational Research, 2018, 8, 843-852.	5.8	8
2	Spatially offset Raman spectroscopy for in vivo bone strength prediction. Biomedical Optics Express, 2018, 9, 4781.	2.9	30
3	Sensitivity of spatially offset Raman spectroscopy (SORS) to subcortical bone tissue. Journal of Biophotonics, 2017, 10, 990-996.	2.3	28
4	Label-Free Measurements of Tenofovir Diffusion Coefficients in a Microbicide Gel Using Raman Spectroscopy. Journal of Pharmaceutical Sciences, 2017, 106, 639-644.	3.3	11
5	Dual-axis optical coherence tomography for deep tissue imaging. Optics Letters, 2017, 42, 2302.	3.3	23
6	Label-free analysis of tenofovir delivery to vaginal tissue using co-registered confocal Raman spectroscopy and optical coherence tomography. PLoS ONE, 2017, 12, e0185633.	2.5	18
7	In vivo Rat Skin Flap Viability Assessment using Dual Axis Spectroscopic Optical Coherence Tomography. , 2017, , .		0
8	Deep imaging of absorption and scattering features by multispectral multiple scattering low coherence interferometry. Biomedical Optics Express, 2016, 7, 3916.	2.9	8
9	Toward the Assessment of Blood Oxygenation Using Multispectral Multiple Scattering Low Coherence Interferometry. , 2016, , .		0
10	Functional optical coherence tomography: principles and progress. Physics in Medicine and Biology, 2015, 60, R211-R237.	3.0	83
11	Co-localized confocal Raman spectroscopy and optical coherence tomography (CRS-OCT) for depth-resolved analyte detection in tissue. Biomedical Optics Express, 2015, 6, 2022.	2.9	29
12	Evaluation of burn severity in vivo in a mouse model using spectroscopic optical coherence tomography. Biomedical Optics Express, 2015, 6, 3339.	2.9	28
13	In vivo Burn Severity Assessment in a Mouse Model Using Spectroscopic Optical Coherence Tomography. , 2015, , .		0
14	Combined Raman Spectroscopy and Optical Coherence Tomography for Measuring Analytes in Targeted Tissues. , 2015, , .		0
15	Sensitivity of coded aperture Raman spectroscopy to analytes beneath turbid biological tissue and tissue-simulating phantoms. Journal of Biomedical Optics, 2014, 19, 117001.	2.6	10
16	Deep tissue imaging using spectroscopic analysis of multiply scattered light. Optica, 2014, 1, 105.	9.3	57
17	In vivo analysis of burns in a mouse model using spectroscopic optical coherence tomography. Optics Letters, 2014, 39, 5594.	3.3	21
18	Bone fragility beyond strength and mineral density: Raman spectroscopy predicts femoral fracture toughness in a murine model of rheumatoid arthritis. Journal of Biomechanics, 2013, 46, 723-730.	2.1	41

JASON R MAHER

0

#	Article	IF	CITATIONS
19	Overconstrained library-based fitting method reveals age- and disease-related differences in transcutaneous Raman spectra of murine bones. Journal of Biomedical Optics, 2013, 18, 077001.	2.6	30
20	Heavy Metal Lead Exposure, Osteoporotic-like Phenotype in an Animal Model, and Depression of Wnt Signaling. Environmental Health Perspectives, 2013, 121, 97-104.	6.0	82
21	Mechanisms of bone fragility in a mouse model of glucocorticoidâ€ŧreated rheumatoid arthritis: Implications for insufficiency fracture risk. Arthritis and Rheumatism, 2012, 64, 3649-3659.	6.7	39
22	Raman spectroscopy detects deterioration in biomechanical properties of bone in a glucocorticoid-treated mouse model of rheumatoid arthritis. Journal of Biomedical Optics, 2011, 16, 087012.	2.6	34
23	Determination of Ideal Offset for Spatially Offset Raman Spectroscopy. Applied Spectroscopy, 2010, 64, 61-65.	2.2	52

24 Steroid Induced Osteoporosis Detected by Raman Spectroscopy. , 2010, , .