
Sotiris Amillis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11631364/publications.pdf Version: 2024-02-01

SOTIDIS AMILLIS

#	Article	IF	CITATIONS
1	Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biology, 2017, 18, 28.	8.8	417
2	Structure of eukaryotic purine/H+ symporter UapA suggests a role for homodimerization in transport activity. Nature Communications, 2016, 7, 11336.	12.8	108
3	The AzgA Purine Transporter of Aspergillus nidulans. Journal of Biological Chemistry, 2004, 279, 3132-3141.	3.4	78
4	Transport-dependent endocytosis and turnover of a uric acid-xanthine permease. Molecular Microbiology, 2010, 75, 246-260.	2.5	76
5	Structural Lipids Enable the Formation of Functional Oligomers of the Eukaryotic Purine Symporter UapA. Cell Chemical Biology, 2018, 25, 840-848.e4.	5.2	64
6	The arrestinâ€like protein <scp>ArtA</scp> is essential for ubiquitination and endocytosis of the <scp>UapA</scp> transporter in response to both broadâ€range and specific signals. Molecular Microbiology, 2013, 88, 301-317.	2.5	60
7	Specific Interdomain Synergy in the UapA Transporter Determines Its Unique Specificity for Uric Acid among NAT Carriers. Journal of Molecular Biology, 2008, 382, 1121-1135.	4.2	55
8	<i>Aspergillus nidulans</i> CkiA is an essential casein kinase I required for delivery of amino acid transporters to the plasma membrane. Molecular Microbiology, 2012, 84, 530-549.	2.5	45
9	The AP-2 complex has a specialized clathrin-independent role in apical endocytosis and polar growth in fungi. ELife, 2017, 6, .	6.0	45
10	Transcription of purine transporter genes is activated during the isotropic growth phase of Aspergillus nidulans conidia. Molecular Microbiology, 2004, 52, 205-216.	2.5	42
11	A Novel-type Substrate-selectivity Filter and ER-exit Determinants in the UapA Purine Transporter. Journal of Molecular Biology, 2006, 357, 808-819.	4.2	41
12	Convergent evolution and orphan genes in the Fur4pâ€ŀike family and characterization of a general nucleoside transporter in <i>Aspergillus nidulans</i> . Molecular Microbiology, 2009, 73, 43-57.	2.5	40
13	Modeling, Substrate Docking, and Mutational Analysis Identify Residues Essential for the Function and Specificity of a Eukaryotic Purine-Cytosine NCS1 Transporter. Journal of Biological Chemistry, 2012, 287, 36792-36803.	3.4	39
14	Substitution F569S converts UapA, a specific uric acid-xanthine transporter, into a broad specificity transporter for purine-related solutes. Journal of Molecular Biology, 2001, 313, 765-774.	4.2	38
15	UreA, the major urea/H+ symporter in Aspergillus nidulans. Fungal Genetics and Biology, 2010, 47, 1023-1033.	2.1	36
16	Oligomerization of the UapA Purine Transporter Is Critical for ER-Exit, Plasma Membrane Localization and Turnover. Journal of Molecular Biology, 2015, 427, 2679-2696.	4.2	36
17	Regulation of expression and kinetic modeling of substrate interactions of a uracil transporter inAspergillus nidulans. Molecular Membrane Biology, 2007, 24, 206-214.	2.0	32
18	Completing the purine utilisation pathway of Aspergillus nidulans. Fungal Genetics and Biology, 2011, 48, 840-848.	2.1	29

SOTIRIS AMILLIS

#	Article	IF	CITATIONS
19	Mutational Analysis and Modeling Reveal Functionally Critical Residues in Transmembrane Segments 1 and 3 of the UapA Transporter. Journal of Molecular Biology, 2011, 411, 567-580.	4.2	25
20	Substrate Specificity of the FurE Transporter Is Determined by Cytoplasmic Terminal Domain Interactions. Genetics, 2017, 207, 1387-1400.	2.9	23
21	Expression and specificity profile of the major acetate transporter AcpA in Aspergillus nidulans. Fungal Genetics and Biology, 2015, 76, 93-103.	2.1	22
22	Cryptic purine transporters in <i>Aspergillus nidulans</i> reveal the role of specific residues in the evolution of specificity in the NCS1 family. Molecular Microbiology, 2017, 103, 319-332.	2.5	22
23	Characterization and kinetics of the major purine transporters in Aspergillus fumigatus. Fungal Genetics and Biology, 2008, 45, 459-472.	2.1	21
24	Characterization of AnNce102 and its role in eisosome stability and sphingolipid biosynthesis. Scientific Reports, 2015, 5, 15200.	3.3	21
25	Secretory Vesicle Polar Sorting, Endosome Recycling and Cytoskeleton Organization Require the AP-1 Complex in <i>Aspergillus nidulans</i> . Genetics, 2018, 209, 1121-1138.	2.9	21
26	Purine utilization proteins in the Eurotiales: Cellular compartmentalization, phylogenetic conservation and divergence. Fungal Genetics and Biology, 2014, 69, 96-108.	2.1	17
27	BsdA ^{Bsd2} â€dependent vacuolar turnover of a misfolded version of the UapA transporter along the secretory pathway: prominent role of selective autophagy. Molecular Microbiology, 2016, 100, 893-911.	2.5	17
28	Translocation of nutrient transporters to cell membrane via Golgi bypass in <i>Aspergillus nidulans</i> . EMBO Reports, 2020, 21, e49929.	4.5	15
29	Modelling and mutational analysis of <i>Aspergillus nidulans</i> UreA, a member of the subfamily of urea/H ⁺ transporters in fungi and plants. Open Biology, 2014, 4, 140070.	3.6	13
30	The peroxisomal SspA protein is redundant for purine utilization but essential for peroxisome localization in septal pores in Aspergillus nidulans. Fungal Genetics and Biology, 2019, 132, 103259.	2.1	3
31	A pair of non-optimal codons are necessary for the correct biosynthesis of the Aspergillus nidulans urea transporter, UreA. Royal Society Open Science, 2019, 6, 190773.	2.4	3
32	Structural Aspects of UapA the H+-Xanthine/Uric Acid Transporter from Aspergillus nidulans. , 2018, , 1-7.		0