Lukasz Szustak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1163113/publications.pdf

Version: 2024-02-01

1040056 940533 30 290 9 16 citations h-index g-index papers 30 30 30 147 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Performance exploration of various C/C++ compilers for AMD EPYC processors in numerical modeling of solidification. Advances in Engineering Software, 2022, 166, 103078.	3.8	3
2	Heterogeneous Voltage Frequency Scaling of Data-Parallel Applications for Energy Saving on Homogeneous Multicore Platforms. Lecture Notes in Computer Science, 2022, , 141-153.	1.3	1
3	Dynamic workload prediction and distribution in numerical modeling of solidification on multiâ€∤manycore architectures. Concurrency Computation Practice and Experience, 2021, 33, e5905.	2.2	3
4	Exploration of OpenCL Heterogeneous Programming for Porting Solidification Modeling to CPUâ€GPU Platforms. Concurrency Computation Practice and Experience, 2021, 33, e6011.	2.2	5
5	Architectural Adaptation and Performance-Energy Optimization for CFD Application on AMD EPYC Rome. IEEE Transactions on Parallel and Distributed Systems, 2021, 32, 2852-2866.	5.6	6
6	About the granularity portability of blockâ€based Krylov methods in heterogeneous computing environments. Concurrency Computation Practice and Experience, 2021, 33, .	2.2	5
7	Correlation of Performance Optimizations and Energy Consumption for Stencil-Based Application on Intel Xeon Scalable Processors. IEEE Transactions on Parallel and Distributed Systems, 2020, 31, 2582-2593.	5.6	11
8	Performance enhancement of a dynamic K-means algorithm through a parallel adaptive strategy on multicore CPUs. Journal of Parallel and Distributed Computing, 2020, 145, 34-41.	4.1	21
9	Performance Optimizations for Parallel Modeling of Solidification with Dynamic Intensity of Computation. Lecture Notes in Computer Science, 2020, , 370-381.	1.3	2
10	Toward Heterogeneous MPI+MPI Programming: Comparison of OpenMP and MPI Shared Memory Models. Lecture Notes in Computer Science, 2020, , 270-281.	1.3	1
11	Unleashing the performance of ccNUMA multiprocessor architectures in heterogeneous stencil computations. Journal of Supercomputing, 2019, 75, 7765-7777.	3.6	4
12	Performance portable parallel programming of heterogeneous stencils across shared-memory platforms with modern Intel processors. International Journal of High Performance Computing Applications, 2019, 33, 534-553.	3.7	8
13	How Pre-multicore Methods and Algorithms Perform in Multicore Era. Lecture Notes in Computer Science, 2018, , 527-539.	1.3	0
14	Porting and optimization of solidification application for CPU–MIC hybrid platforms. International Journal of High Performance Computing Applications, 2018, 32, 523-539.	3.7	10
15	Assessment of offload-based programming environments for hybrid CPU–MIC platforms in numerical modeling of solidification. Simulation Modelling Practice and Theory, 2018, 87, 48-72.	3.8	9
16	Strategy for data-flow synchronizations in stencil parallel computations on multi-/manycore systems. Journal of Supercomputing, 2018, 74, 1534-1546.	3.6	10
17	Model-Based Optimization of EULAG Kernel on Intel Xeon Phi Through Load Imbalancing. IEEE Transactions on Parallel and Distributed Systems, 2017, 28, 787-797.	5.6	35
18	Islands-of-Cores Approach for Harnessing SMP/NUMA Architectures in Heterogeneous Stencil Computations. Lecture Notes in Computer Science, 2017, , 351-364.	1.3	2

#	Article	IF	CITATIONS
19	Using hStreams Programming Library for Accelerating a Real-Life Application on Intel MIC. Lecture Notes in Computer Science, 2016, , 373-382.	1.3	3
20	Toward Parallel Modeling of Solidification Based on the Generalized Finite Difference Method Using Intel Xeon Phi. Lecture Notes in Computer Science, 2016, , 411-422.	1.3	7
21	Network-Aware Optimization of MPDATA on Homogeneous Multi-core Clusters with Heterogeneous Network. Lecture Notes in Computer Science, 2016, , 30-42.	1.3	2
22	Adaptation of fluid model EULAG to graphics processing unit architecture. Concurrency Computation Practice and Experience, 2015, 27, 937-957.	2.2	24
23	Adaptation of MPDATA Heterogeneous Stencil Computation to Intel Xeon Phi Coprocessor. Scientific Programming, 2015, 2015, 1-14.	0.7	28
24	Adaptation of Multidimensional Positive Definite Advection Transport Algorithm to Modern High-Performance Computing Platforms. International Journal of Modeling and Optimization, 2015, 5, 171-176.	0.4	7
25	Parallelization of 2D MPDATA EULAG algorithm on hybrid architectures with GPU accelerators. Parallel Computing, 2014, 40, 425-447.	2.1	25
26	Performance Analysis for Stencil-Based 3D MPDATA Algorithm on GPU Architecture. Lecture Notes in Computer Science, 2014, , 145-154.	1.3	8
27	Using Intel Xeon Phi Coprocessor to Accelerate Computations in MPDATA Algorithm. Lecture Notes in Computer Science, 2014, , 582-592.	1.3	19
28	Towards Efficient Decomposition and Parallelization of MPDATA on Hybrid CPU-GPU Cluster. Lecture Notes in Computer Science, 2014, , 457-464.	1.3	9
29	Model-driven adaptation of double-precision matrix multiplication to the Cell processor architecture. Parallel Computing, 2012, 38, 260-276.	2.1	14
30	Parallelization of EULAG Model on Multicore Architectures with GPU Accelerators. Lecture Notes in Computer Science, 2012, , 391-400.	1.3	8