
Joseph H Porter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11630732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of subanesthetic ketamine and (2R,6R) hydroxynorketamine on working memory and synaptic transmission in the nucleus reuniens in mice. Neuropharmacology, 2022, 208, 108965.	2.0	5
2	How to account for hallucinations in the interpretation of the antidepressant effects of psychedelics: a translational framework. Psychopharmacology, 2022, 239, 1853-1879.	1.5	5
3	Preliminary assessment of the subjective effects of electronic-cigarettes in young-adult low-dose electronic-cigarette users: Effects of nicotine dose and e-liquid flavor. Journal of American College Health, 2021, , 1-10.	0.8	2
4	Opioid receptor system contributes to the acute and sustained antidepressant-like effects, but not the hyperactivity motor effects of ketamine in mice. Pharmacology Biochemistry and Behavior, 2021, 208, 173228.	1.3	18
5	What role does the (2 R ,6 R)â€hydronorketamine metabolite play in the antidepressantâ€like and abuseâ€related effects of (R)â€ketamine?. British Journal of Pharmacology, 2019, 176, 3886-3888.	2.7	7
6	Discriminative stimulus properties of the typical antipsychotic haloperidol compared to other antipsychotic drugs in C57BL/6 mice. Behavioural Pharmacology, 2019, 30, 521-528.	0.8	1
7	The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice. Scientific Reports, 2018, 8, 3840.	1.6	261
8	Vortioxetine Differentially Modulates MK-801-Induced Changes in Visual Signal Detection Task Performance and Locomotor Activity. Frontiers in Pharmacology, 2018, 9, 1024.	1.6	5
9	Drug Discrimination: Historical Origins, Important Concepts, and Principles. Current Topics in Behavioral Neurosciences, 2018, 39, 3-26.	0.8	14
10	Translational Value of Drug Discrimination with Typical and Atypical Antipsychotic Drugs. Current Topics in Behavioral Neurosciences, 2017, 39, 193-212.	0.8	1
11	Discriminative stimulus properties of the atypical antipsychotic amisulpride: comparison to its isomers and to other benzamide derivatives, antipsychotic, antidepressant, and antianxiety drugs in C57BL/6 mice. Psychopharmacology, 2017, 234, 3507-3520.	1.5	7
12	In Vitro and In Vivo Characterization of the Alkaloid Nuciferine. PLoS ONE, 2016, 11, e0150602.	1.1	28
13	The Discriminative Stimulus Properties of Drugs Used to Treat Depression and Anxiety. Current Topics in Behavioral Neurosciences, 2016, 39, 213-241.	0.8	2
14	Discriminative stimulus properties of 1.25 mg/kg clozapine in rats: Mediation by serotonin 5-HT 2 and dopamine D 4 receptors. Brain Research, 2016, 1648, 298-305.	1.1	6
15	Task- and Treatment Length-Dependent Effects of Vortioxetine on Scopolamine-Induced Cognitive Dysfunction and Hippocampal Extracellular Acetylcholine in Rats. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 472-482.	1.3	20
16	Effects of the noncompetitive N-methyl-D-aspartate receptor antagonist ketamine on visual signal detection performance in rats. Behavioural Pharmacology, 2015, 26, 495-499.	0.8	6
17	A brief history of the development of antidepressant drugs: From monoamines to glutamate Experimental and Clinical Psychopharmacology, 2015, 23, 1-21.	1.3	344
18	Ketamine, but not MK-801, produces antidepressant-like effects in rats responding on a differential-reinforcement-of-low-rate operant schedule. Behavioural Pharmacology, 2014, 25, 80-91.	0.8	29

#	Article	IF	CITATIONS
19	(S)-amisulpride as a discriminative stimulus in C57BL/6 mice and its comparison to the stimulus effects of typical and atypical antipsychotics. European Journal of Pharmacology, 2014, 734, 15-22.	1.7	6
20	Dissociable effects of the noncompetitive NMDA receptor antagonists ketamine and MK-801 on intracranial self-stimulation in rats. Psychopharmacology, 2014, 231, 2705-2716.	1.5	25
21	Reply to: Rapid antidepressant effects and abuse liability of ketamine. Psychopharmacology, 2014, 231, 2043-2044.	1.5	1
22	Comparison of Antidepressantâ€Like and Abuseâ€Related Effects of Phencyclidine in Rats. Drug Development Research, 2014, 75, 479-488.	1.4	11
23	Discriminative stimulus properties of N-desmethylclozapine, the major active metabolite of the atypical antipsychotic clozapine, in C57BL/6 mice. Behavioural Pharmacology, 2012, 23, 262-270.	0.8	8
24	The metabolites N-desmethylclozapine and N-desmethylolanzapine produce cross-tolerance to the discriminative stimulus of the atypical antipsychotic clozapine in C57BL/6 mice. Behavioural Pharmacology, 2011, 22, 458-467.	0.8	4
25	Clozapine and N-Methyl-d-Aspartate have positive modulatory actions on their respective discriminative stimulus properties in C57BL/6 mice. European Journal of Pharmacology, 2011, 650, 579-585.	1.7	2
26	The role of M1 muscarinic cholinergic receptors in the discriminative stimulus properties of N-desmethylclozapine and the atypical antipsychotic drug clozapine in rats. Psychopharmacology, 2009, 203, 295-301.	1.5	11
27	Discriminative stimulus properties of atypical and typical antipsychotic drugs: a review of preclinical studies. Psychopharmacology, 2009, 203, 279-294.	1.5	20
28	Further characterization of the discriminative stimulus properties of the atypical antipsychotic drug clozapine in C57BL/6 mice: role of 5-HT2A serotonergic and α1 adrenergic antagonism. Psychopharmacology, 2009, 203, 303-315.	1.5	16
29	Drug discrimination: 30Âyears of progress. Psychopharmacology, 2009, 203, 189-191.	1.5	9
30	Route of administration influences substitution patterns in rats trained to discriminate methadone vs. vehicle. Drug and Alcohol Dependence, 2009, 103, 124-130.	1.6	6
31	Antipsychotic Drugs: Comparison in Animal Models of Efficacy, Neurotransmitter Regulation, and Neuroprotection. Pharmacological Reviews, 2008, 60, 358-403.	7.1	213
32	A comparison of the discriminative stimulus properties of the atypical antipsychotic drug clozapine in DBA/2 and C57BL/6 inbred mice. Behavioural Pharmacology, 2008, 19, 530-542.	0.8	11
33	Discriminative stimulus properties of the atypical antipsychotic drug clozapine in rats trained to discriminate 1.25 mg/kg clozapine vs. 5.0 mg/kg clozapine vs. vehicle. Behavioural Pharmacology, 2006, 185-194.	17,8	18
34	Generalization testing with atypical and typical antipsychotic drugs in rats trained to discriminate 5.0 mg/kg clozapine from vehicle in a two-choice drug discrimination task. Drug Development Research, 2005, 64, 55-65.	1.4	7
35	Discriminative stimulus properties of the atypical antipsychotic clozapine and the typical antipsychotic chlorpromazine in a three-choice drug discrimination procedure in rats. Psychopharmacology, 2005, 178, 67-77.	1.5	23
36	Serotonin receptor mechanisms mediate the discriminative stimulus properties of the atypical antipsychotic clozapine in C57BL/6 mice. Psychopharmacology, 2005, 180, 49-56.	1.5	24

#	Article	IF	CITATIONS
37	Role of D1 and D2 dopamine receptors in the discriminative stimulus properties of the atypical antipsychotic clozapine in rats. Drug Development Research, 1999, 46, 139-147.	1.4	15
38	Chlorpromazine as a discriminative stimulus in rats: Generalization to typical and atypical and atypical antipsychotics. Drug Development Research, 1999, 48, 38-44.	1.4	11
39	Effects of modulation of NMDA neurotransmission on response rate and duration in a conflict procedure in rats. Neuropharmacology, 1998, 37, 1527-1534.	2.0	16
40	The Role of Muscarinic Cholinergic Receptors in the Discriminative Stimulus Properties of Clozapine in Rats. Pharmacology Biochemistry and Behavior, 1997, 57, 707-719.	1.3	56
41	Antagonism of diazepam's anticonflict effects in rats by nicotine, but not by arecoline. Drug Development Research, 1994, 31, 45-51.	1.4	1
42	Differential effects of clozapine and pimozide on fixed-ratio responding during repeated dosing. Pharmacology Biochemistry and Behavior, 1994, 48, 253-257.	1.3	16
43	Effects of four antipsychotics on punished responding in rats. Pharmacology Biochemistry and Behavior, 1993, 45, 263-267.	1.3	39
44	Effects of serotonergic drugs in rats trained to discriminate clozapine from haloperidol. Bulletin of the Psychonomic Society, 1993, 31, 94-96.	0.2	10
45	Antipunishment effects of acute and repeated administration of phencyclidine and NPC 12626 in rats. Life Sciences, 1992, 50, 1519-1528.	2.0	13
46	Pimozide mitigates excessive running in the activity-stress paradigm. Physiology and Behavior, 1992, 52, 299-304.	1.0	26
47	Serotonergic drugs do not substitute for clozapine in clozapine-trained rats in a two-lever drug discrimination procedure. Pharmacology Biochemistry and Behavior, 1992, 43, 961-965.	1.3	42
48	Differential effects of haloperidol and clozapine on the reinforcing efficacy of food reward in an alleyway reacquisition paradigm. Pharmacology Biochemistry and Behavior, 1990, 36, 569-573.	1.3	8
49	Haloperidol blocks reacquisition of operant running during extinction following a single priming trial with food reward. Bulletin of the Psychonomic Society, 1989, 27, 340-342.	0.2	5
50	Rats that acquire a THC discrimination more rapidly are more sensitive to THC and faster in reaching operant criteria. Pharmacology Biochemistry and Behavior, 1988, 29, 67-71.	1.3	10
51	Assessment of pimozide's motor and hedonic effects on operant behavior in rats. Pharmacology Biochemistry and Behavior, 1988, 31, 779-786.	1.3	22
52	Schedule-induced polydipsia: Another look at water-intake volume regulationâ~†. Physiology and Behavior, 1985, 35, 221-227.	1.0	3
53	Effects of glucose–saccharin preloads on schedule- and deprivation-induced drinking in rats. Behavioral and Neural Biology, 1985, 44, 492-498.	2.3	1
54	Failure to block opiate effects of oral etonitazene with naltrexone during 24-h choice testing. Bulletin of the Psychonomic Society, 1985, 23, 241-244.	0.2	1

#	Article	IF	CITATIONS
55	Associative control of schedule-induced drinking. Learning and Behavior, 1984, 12, 339-340.	3.4	4
56	Latent inhibition in the aversion to oral methadone. Pharmacology Biochemistry and Behavior, 1984, 20, 467-472.	1.3	5
57	Schedule-induced behavior in children as a function of interreinforcement interval length. Physiology and Behavior, 1984, 33, 153-157.	1.0	13
58	Differential effects of dopamine blockers on the acquisition of schedule-induced drinking and deprivation-induced drinking. Physiological Psychology, 1984, 12, 302-306.	0.8	13
59	Schedule-induced and water-deprivation-induced drinking in rats: Effects of hypertonic saline challenges to homeostatic thirst mechanisms. Bulletin of the Psychonomic Society, 1983, 21, 403-406.	0.2	2
60	A comparison of schedule-induced wheel running in rats, hamsters, gerbils, and guinea pigs. Bulletin of the Psychonomic Society, 1983, 21, 311-314.	0.2	3
61	Schedule-induced polydipsia as a function of percent of body weight in the mongolian gerbil. Physiology and Behavior, 1983, 31, 137-139.	1.0	3
62	Intraperitoneal preloads of water, but not isotonic saline, suppress schedule-induced polydipsia in rats. Physiology and Behavior, 1982, 29, 795-801.	1.0	5
63	Schedule-induced polydipsia in F1 hybrid rats of wild-caught and domestic Norway rats. Physiology and Behavior, 1981, 26, 1001-1005.	1.0	1
64	STIMULUS GENERALIZATION OF SCHEDULE-INDUCED POLYDIPSIA. Journal of the Experimental Analysis of Behavior, 1981, 36, 93-99.	0.8	9
65	Schedule-induced polydipsia in the cotton rat (Sigmodon hispidus). Bulletin of the Psychonomic Society, 1980, 16, 15-18.	0.2	5
66	Failure to Demonstrate Schedule-Induced Polydipsia in the Degu (<i>Octodon Degus</i>). Psychological Reports, 1979, 44, 1276-1276.	0.9	1
67	Effects of body weight and level of deprivation on activity of rats with lesions of the ventromedial hypothalamus. Physiological Psychology, 1979, 7, 178-184.	0.8	0
68	Acquisition of schedule-induced polydipsia in the mongolian gerbil. Physiology and Behavior, 1978, 21, 825-827.	1.0	55
69	Adjunctive behavior in the Mongolian gerbil. Physiology and Behavior, 1978, 21, 151-155.	1.0	17
70	Compound stimulus control of operant, but not adjunctive, behavior. Bulletin of the Psychonomic Society, 1978, 12, 167-170.	0.2	5
71	Sources of control over schedule-induced drinking produced by second-order schedules of reinforcement. Physiology and Behavior, 1977, 18, 853-863.	1.0	21
72	Schedule-induced polydipsia in the guinea pig. Physiology and Behavior, 1977, 19, 573-575.	1.0	20

#	Article	IF	CITATIONS
73	Schedule-induced polydipsia contrast in the rat. Learning and Behavior, 1977, 5, 184-192.	3.4	9
74	Food-motivated performance in rats with ventromedial hypothalamic lesions: Effects of body weight, deprivation, and preoperative training. Behavioral Biology, 1977, 19, 238-254.	2.3	10
75	SCHEDULE-INDUCED DRINKING AS A FUNCTION OF PERCENTAGE REINFORCEMENT1. Journal of the Experimental Analysis of Behavior, 1975, 23, 223-232.	0.8	34
76	Demonstration of behavioral contrast with adjunctive drinking. Physiology and Behavior, 1975, 15, 511-515.	1.0	10
77	Reinforcement frequency and body weight as determinants of motivated performance in hypothalamic hyperphagic rats. Physiology and Behavior, 1974, 13, 627-632.	1.0	13
78	Food-motivated performance as a function of weight loss in hypothalamic hyperphagic rats. Learning and Behavior, 1972, 28, 285-288.	0.6	16