Robin M Shaw

List of Publications by Citations

Source: https://exaly.com/author-pdf/1163073/robin-m-shaw-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68
papers

4,556
citations

h-index

67
g-index

79
ext. papers

5,279
ext. citations

10.5
avg, IF

L-index

#	Paper	IF	Citations
68	Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. <i>Circulation Research</i> , 1997 , 81, 727-41	15.7	452
67	Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. <i>Developmental Cell</i> , 2009 , 16, 233-44	10.2	424
66	Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. <i>Cell</i> , 2007 , 128, 547-60	56.2	374
65	Foxn4 directly regulates tbx2b expression and atrioventricular canal formation. <i>Genes and Development</i> , 2008 , 22, 734-9	12.6	258
64	Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration. <i>Cardiovascular Research</i> , 1997 , 35, 256-72	9.9	222
63	Genetic and physiologic dissection of the vertebrate cardiac conduction system. <i>PLoS Biology</i> , 2008 , 6, e109	9.7	196
62	Stromal cell-derived factor-1alpha is cardioprotective after myocardial infarction. <i>Circulation</i> , 2008 , 117, 2224-31	16.7	182
61	Limited forward trafficking of connexin 43 reduces cell-cell coupling in stressed human and mouse myocardium. <i>Journal of Clinical Investigation</i> , 2010 , 120, 266-79	15.9	168
60	BIN1 localizes the L-type calcium channel to cardiac T-tubules. <i>PLoS Biology</i> , 2010 , 8, e1000312	9.7	158
59	Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. <i>Nature Medicine</i> , 2014 , 20, 624-32	50.5	150
58	Electrophysiologic effects of acute myocardial ischemia. A mechanistic investigation of action potential conduction and conduction failure. <i>Circulation Research</i> , 1997 , 80, 124-38	15.7	149
57	Mammalian electrophysiology on a microfluidic platform. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 9112-7	11.5	145
56	BIN1 is reduced and Cav1.2 trafficking is impaired in human failing cardiomyocytes. <i>Heart Rhythm</i> , 2012 , 9, 812-20	6.7	103
55	Actin cytoskeleton rest stops regulate anterograde traffic of connexin 43 vesicles to the plasma membrane. <i>Circulation Research</i> , 2012 , 110, 978-89	15.7	101
54	L-type calcium channel targeting and local signalling in cardiac myocytes. <i>Cardiovascular Research</i> , 2013 , 98, 177-86	9.9	100
53	Autoregulation of connexin43 gap junction formation by internally translated isoforms. <i>Cell Reports</i> , 2013 , 5, 611-8	10.6	95
52	Microfluidic application-specific integrated device for monitoring direct cell-cell communication via gap junctions between individual cell pairs. <i>Applied Physics Letters</i> , 2005 , 86, 223902	3.4	95

51	Cardiac T-Tubule Microanatomy and Function. <i>Physiological Reviews</i> , 2017 , 97, 227-252	47.9	91
50	Cardiac conduction is required to preserve cardiac chamber morphology. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 14662-7	11.5	90
49	Iroquois homeobox gene 3 establishes fast conduction in the cardiac His-Purkinje network. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13576-81	11.5	84
48	The vulnerable window for unidirectional block in cardiac tissue: characterization and dependence on membrane excitability and intercellular coupling. <i>Journal of Cardiovascular Electrophysiology</i> , 1995 , 6, 115-31	2.7	72
47	A 14-3-3 mode-1 binding motif initiates gap junction internalization during acute cardiac ischemia. <i>Traffic</i> , 2014 , 15, 684-99	5.7	63
46	Dynasore protects mitochondria and improves cardiac lusitropy in Langendorff perfused mouse heart. <i>PLoS ONE</i> , 2013 , 8, e60967	3.7	61
45	Redox-sensitive sulfenic acid modification regulates surface expression of the cardiovascular voltage-gated potassium channel Kv1.5. <i>Circulation Research</i> , 2012 , 111, 842-53	15.7	60
44	Intracellular trafficking pathways of Cx43 gap junction channels. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2018 , 1860, 40-47	3.8	55
43	GJA1-20k Arranges Actin to Guide Cx43 Delivery to Cardiac Intercalated Discs. <i>Circulation Research</i> , 2017 , 121, 1069-1080	15.7	50
42	Na+ channel function, regulation, structure, trafficking and sequestration. <i>Journal of Physiology</i> , 2015 , 593, 1347-60	3.9	42
41	Cx43 Isoform GJA1-20k Promotes Microtubule Dependent Mitochondrial Transport. <i>Frontiers in Physiology</i> , 2017 , 8, 905	4.6	40
40	Stress response protein GJA1-20k promotes mitochondrial biogenesis, metabolic quiescence, and cardioprotection against ischemia/reperfusion injury. <i>JCI Insight</i> , 2018 , 3,	9.9	39
39	Plasma BIN1 correlates with heart failure and predicts arrhythmia in patients with arrhythmogenic right ventricular cardiomyopathy. <i>Heart Rhythm</i> , 2012 , 9, 961-7	6.7	38
38	Role for myosin-V motor proteins in the selective delivery of Kv channel isoforms to the membrane surface of cardiac myocytes. <i>Circulation Research</i> , 2014 , 114, 982-92	15.7	27
37	Forward trafficking of ion channels: what the clinician needs to know. <i>Heart Rhythm</i> , 2010 , 7, 1135-40	6.7	26
36	Multilayered regulation of cardiac ion channels. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 2013 , 1833, 876-85	4.9	23
35	The gap junction life cycle. <i>Heart Rhythm</i> , 2012 , 9, 151-3	6.7	23
34	Validation of the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL) pulmonary hypertension prediction model in a unique population and utility in the prediction of long-term survival. <i>Journal of Heart and Lung Transplantation</i> , 2012 ,	5.8	22

33	Association of a Novel Diagnostic Biomarker, the Plasma Cardiac Bridging Integrator 1 Score, With Heart Failure With Preserved Ejection Fraction and Cardiovascular Hospitalization. <i>JAMA Cardiology</i> , 2018 , 3, 1206-1210	16.2	21
32	Connexin 43 and CaV1.2 Ion Channel Trafficking in Healthy and Diseased Myocardium. <i>Circulation: Arrhythmia and Electrophysiology</i> , 2016 , 9, e001357	6.4	19
31	Trafficking highways to the intercalated disc: new insights unlocking the specificity of connexin 43 localization. <i>Cell Communication and Adhesion</i> , 2014 , 21, 43-54		18
30	The "tail" of Connexin43: An unexpected journey from alternative translation to trafficking. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 2016 , 1863, 1848-56	4.9	18
29	3-OST-7 regulates BMP-dependent cardiac contraction. <i>PLoS Biology</i> , 2013 , 11, e1001727	9.7	17
28	The ESCRT-III pathway facilitates cardiomyocyte release of cBIN1-containing microparticles. <i>PLoS Biology</i> , 2017 , 15, e2002354	9.7	17
27	Auxiliary trafficking subunit GJA1-20k protects connexin-43 from degradation and limits ventricular arrhythmias. <i>Journal of Clinical Investigation</i> , 2020 , 130, 4858-4870	15.9	16
26	Acute vincristine pretreatment protects adult mouse cardiac myocytes from oxidative stress. <i>Journal of Molecular and Cellular Cardiology</i> , 2007 , 43, 327-36	5.8	15
25	A micropatterning approach for imaging dynamic Cx43 trafficking to cell-cell borders. <i>FEBS Letters</i> , 2014 , 588, 1439-45	3.8	14
24	Performance of the REVEAL model in WHO Group 2 to 5 pulmonary hypertension: application beyond pulmonary arterial hypertension. <i>Journal of Heart and Lung Transplantation</i> , 2013 , 32, 293-8	5.8	14
23	Cardiac excitation: an interactive process of ion channels and gap junctions. <i>Advances in Experimental Medicine and Biology</i> , 1997 , 430, 269-79	3.6	12
22	Cardiomyocyte protein trafficking: Relevance to heart disease and opportunities for therapeutic intervention. <i>Trends in Cardiovascular Medicine</i> , 2015 , 25, 379-89	6.9	11
21	Rad-deletion Phenocopies Tonic Sympathetic Stimulation of the Heart. <i>Journal of Cardiovascular Translational Research</i> , 2016 , 9, 432-444	3.3	10
20	In Mice Subjected to Chronic Stress, Exogenous cBIN1 Preserves Calcium-Handling Machinery and Cardiac Function. <i>JACC Basic To Translational Science</i> , 2020 , 5, 561-578	8.7	8
19	Visualizing ion channel dynamics at the plasma membrane. <i>Heart Rhythm</i> , 2008 , 5, S7-11	6.7	8
18	An Alternatively Translated Connexin 43 Isoform, GJA1-11k, Localizes to the Nucleus and Can Inhibit Cell Cycle Progression. <i>Biomolecules</i> , 2020 , 10,	5.9	7
17	Desmosomal hotspots, microtubule delivery, and cardiac arrhythmogenesis. <i>Developmental Cell</i> , 2014 , 31, 139-40	10.2	7
16	Exogenous Cardiac Bridging Integrator 1 Benefits Mouse Hearts With Pre-existing Pressure Overload-Induced Heart Failure. <i>Frontiers in Physiology</i> , 2020 , 11, 708	4.6	6

LIST OF PUBLICATIONS

15	cBIN1 Score (CS) Identifies Ambulatory HFrEF Patients and Predicts Cardiovascular Events. <i>Frontiers in Physiology</i> , 2020 , 11, 503	4.6	5
14	Visualizing cardiac ion channel trafficking pathways. <i>Methods in Enzymology</i> , 2012 , 505, 187-202	1.7	5
13	Cardiac muscle is not a uniform syncytium. <i>Biophysical Journal</i> , 2010 , 98, 3102-3; discussion 3104-5	2.9	5
12	A role for connexin-43 in Duchenne muscular dystrophy cardiomyopathy. <i>Journal of Clinical Investigation</i> , 2020 , 130, 1608-1610	15.9	3
11	Protective mitochondrial fission induced by stress-responsive protein GJA1-20k. <i>ELife</i> , 2021 , 10,	8.9	2
10	Protective mitochondrial fission induced by stress responsive protein GJA1-20k		2
9	Letter by Nikolova et al Regarding Article, "Heart Failure With Preserved Ejection Fraction in Perspective". <i>Circulation Research</i> , 2019 , 125, e24-e25	15.7	1
8	GJA1-20k, an internally translated isoform of Connexin 43, is an actin capping protein		1
7	SARS-CoV-2 as an inflammatory cardiovascular disease: current knowledge and future challenges. <i>Future Cardiology</i> , 2021 , 17, 1277-1291	1.3	1
6	Association of coronary microvascular dysfunction and cardiac bridge integrator 1, a cardiomyocyte dysfunction biomarker. <i>Clinical Cardiology</i> , 2021 , 44, 1586-1593	3.3	1
5	Gap Junctions and the Spread of Electrical Excitation. <i>Developments in Cardiovascular Medicine</i> , 1998 , 125-147		1
4	GJA1-20k and Mitochondrial Dynamics Frontiers in Physiology, 2022, 13, 867358	4.6	O
3	Ion Channel Trafficking in the Heart 2018 , 160-166		
2	Ion Channel Trafficking in the Heart 2014 , 171-178		
1	Correlating Cardiac Origin Neurohormonal Stress Levels With Heart Failure Outcomes. <i>JAMA Cardiology</i> , 2020 , 5, 326-327	16.2	