Robert F Chapman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11629815/publications.pdf Version: 2024-02-01

ROBERT F CHARMAN

#	Article	IF	CITATIONS
1	Individual variation in response to altitude training. Journal of Applied Physiology, 1998, 85, 1448-1456.	2.5	298
2	"Living high-training low―altitude training improves sea level performance in male and female elite runners. Journal of Applied Physiology, 2001, 91, 1113-1120.	2.5	275
3	Defining the "dose―of altitude training: how high to live for optimal sea level performance enhancement. Journal of Applied Physiology, 2014, 116, 595-603.	2.5	88
4	Degree of arterial desaturation in normoxia influences &OV0312O2max decline in mild hypoxia. Medicine and Science in Sports and Exercise, 1999, 31, 658-663.	0.4	79
5	The individual response to training and competition at altitude. British Journal of Sports Medicine, 2013, 47, i40-i44.	6.7	70
6	Hypoxic training methods for improving endurance exercise performance. Journal of Sport and Health Science, 2015, 4, 325-332.	6.5	63
7	Inspiratory muscle training lowers the oxygen cost of voluntary hyperpnea. Journal of Applied Physiology, 2012, 112, 127-134.	2.5	54
8	Ground Contact Time as an Indicator of Metabolic Cost in Elite Distance Runners. Medicine and Science in Sports and Exercise, 2012, 44, 917-925.	0.4	53
9	Timing of return from altitude training for optimal sea level performance. Journal of Applied Physiology, 2014, 116, 837-843.	2.5	53
10	Impairment of 3000-m Run Time at Altitude Is Influenced by Arterial Oxyhemoglobin Saturation. Medicine and Science in Sports and Exercise, 2011, 43, 1649-1656.	0.4	48
11	The role of inspiratory muscle training in the management of asthma and exercise-induced bronchoconstriction. Physician and Sportsmedicine, 2016, 44, 327-334.	2.1	46
12	Functional Movement Scores and Longitudinal Performance Outcomes in Elite Track and Field Athletes. International Journal of Sports Physiology and Performance, 2014, 9, 203-211.	2.3	40
13	Altitude training considerations for the winter sport athlete. Experimental Physiology, 2010, 95, 411-421.	2.0	37
14	Expiratory flow limitation confounds ventilatory response during exercise in athletes. Medicine and Science in Sports and Exercise, 2000, 32, 1873-1879.	0.4	36
15	Is live high <i>–</i> train low altitude training relevant for elite athletes? Flawed analysis from inaccurate data. British Journal of Sports Medicine, 2019, 53, 923-925.	6.7	27
16	Timing of Arrival and Pre-acclimatization Strategies for the Endurance Athlete Competing at Moderate to High Altitudes. High Altitude Medicine and Biology, 2013, 14, 319-324.	0.9	26
17	Living altitude influences endurance exercise performance change over time at altitude. Journal of Applied Physiology, 2016, 120, 1151-1158.	2.5	23
18	Serum ferritin distribution in elite athletes. Journal of Science and Medicine in Sport, 2020, 23, 554-558.	1.3	22

ROBERT F CHAPMAN

#	Article	IF	CITATIONS
19	A Clinician Guide to Altitude Training for Optimal Endurance Exercise Performance at Sea Level. High Altitude Medicine and Biology, 2017, 18, 93-101.	0.9	21
20	Increases in \$\$ dot{V} \$\$ O2max with "live high–train low―altitude training: role of ventilatory acclimatization. European Journal of Applied Physiology, 2013, 113, 419-426.	2.5	20
21	Caffeine Stimulates Ventilation in Athletes with Exercise-Induced Hypoxemia. Medicine and Science in Sports and Exercise, 2008, 40, 1080-1086.	0.4	19
22	Prevalence of Exercise-Induced Arterial Hypoxemia in Distance Runners at Sea Level. Medicine and Science in Sports and Exercise, 2017, 49, 948-954.	0.4	19
23	Ischemic Preconditioning, O2 Kinetics, and Performance in Normoxia and Hypoxia. Medicine and Science in Sports and Exercise, 2019, 51, 900-911.	0.4	19
24	Epo production at altitude in elite endurance athletes is not associated with the sea level hypoxic ventilatory response. Journal of Science and Medicine in Sport, 2010, 13, 624-629.	1.3	18
25	Operating lung volumes are affected by exercise mode but not trunk and hip angle during maximal exercise. European Journal of Applied Physiology, 2014, 114, 2387-2397.	2.5	17
26	Endurance exercise performance in acute hypoxia is influenced by expiratory flow limitation. European Journal of Applied Physiology, 2015, 115, 1653-1663.	2.5	16
27	Inspiratory muscle training improves exercise capacity with thoracic load carriage. Physiological Reports, 2018, 6, e13558.	1.7	15
28	Synchronizing Gait with Cardiac Cycle Phase Alters Heart Rate Response during Running. Medicine and Science in Sports and Exercise, 2018, 50, 1046-1053.	0.4	15
29	Iron insufficiency diminishes the erythropoietic response to moderate altitude exposure. Journal of Applied Physiology, 2019, 127, 1569-1578.	2.5	13
30	Commentaries on Viewpoint: Physiology and fast marathons. Journal of Applied Physiology, 2020, 128, 1069-1085.	2.5	12
31	Heat Versus Altitude Training for Endurance Performance at Sea Level. Exercise and Sport Sciences Reviews, 2021, 49, 50-58.	3.0	11
32	Short-term arrival strategies for endurance exercise performance at moderate altitude. Journal of Applied Physiology, 2017, 123, 1258-1265.	2.5	10
33	Respiratory Effects of Thoracic Load Carriage Exercise and Inspiratory Muscle Training as a Strategy to Optimize Respiratory Muscle Performance with Load Carriage. Springer Science Reviews, 2017, 5, 49-64.	1.3	9
34	Career Performance Progressions of Junior and Senior Elite Track and Field Athletes. Journal of Science in Sport and Exercise, 2019, 1, 168-175.	1.0	8
35	Runners maintain locomotor–respiratory coupling following isocapnic voluntary hyperpnea to task failure. European Journal of Applied Physiology, 2015, 115, 2395-2405.	2.5	6
36	Locomotor-respiratory coupling is maintained in simulated moderate altitude in trained distance runners. Journal of Applied Physiology, 2018, 125, 1-7.	2.5	6

ROBERT F CHAPMAN

#	Article	IF	CITATIONS
37	Live-High Train-Low Altitude Training on Maximal Oxygen Consumption in Athletes: A Systematic Review and Meta-Analysis. International Journal of Sports Science and Coaching, 2012, 7, 15-19.	1.4	5
38	Inspiratory Muscle Training: Improvement of Exercise Performance With Acute Hypoxic Exposure. International Journal of Sports Physiology and Performance, 2019, 14, 1124-1131.	2.3	5
39	Influence of Zinc on the Acute Changes in Erythropoietin and Proinflammatory Cytokines with Hypoxia. High Altitude Medicine and Biology, 2020, 22, 148-156.	0.9	4
40	High Intraindividual Variability in the Response of Serum Erythropoietin to Multiple Simulated Altitude Exposures. High Altitude Medicine and Biology, 2022, 23, 85-89.	0.9	4
41	Effect of carbohydrate ingestion on central fatigue during prolonged running exercise in moderate hypoxia. Journal of Applied Physiology, 2019, 126, 141-151.	2.5	3
42	Ventilatory Responsiveness during Exercise and Performance Impairment in Acute Hypoxia. Medicine and Science in Sports and Exercise, 2021, 53, 295-305.	0.4	3
43	Respiratory Muscle Fatigue Alters Cycling Performance and Locomotor Muscle Fatigue. Medicine and Science in Sports and Exercise, 2020, 52, 2380-2389.	0.4	2
44	A Narrative Analysis of the Progression in the Top 100 Marathon, Half-Marathon, and 10-km Road Race Times from 2001 to 2019. Medicine and Science in Sports and Exercise, 2022, 54, 345-352.	0.4	2
45	Repeated High-Intensity Cycling Performance Is Unaffected by Timing of Carbohydrate Ingestion. Journal of Strength and Conditioning Research, 2018, 32, 2243-2249.	2.1	1
46	Acute hypercapnia does not alter voluntary drive to the diaphragm in healthy humans. Respiratory Physiology and Neurobiology, 2018, 258, 60-68.	1.6	1
47	Attentional focus does not impact locomotor–respiratory coupling in trained runners. European Journal of Applied Physiology, 2020, 120, 2477-2486.	2.5	1
48	Altitude. , 2018, , 125-144.		0
49	"Train-High Sleep-Low―Dietary Periodization Does Not Alter Ventilatory Strategies During Cycling Exercise. Journal of the American College of Nutrition, 2020, 39, 325-332.	1.8	0
50	The Effects of PCSO-524®, a Patented Marine Oil Lipid derived from the New Zealand Green Lipped Mussel (), on Pulmonary and Respiratory Muscle Function in Non-asthmatic Elite Runners. International Journal of Exercise Science, 2018, 11, 669-680.	0.5	0
51	Nedocromil sodium and diphenhydramine HCl ameliorate exerciseâ€induced arterial hypoxemia in highly trained athletes. Physiological Reports, 2022, 10, e15149.	1.7	Ο