
Xinjian Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11628486/publications.pdf Version: 2024-02-01

Χινιιανίζιι

#	Article	IF	CITATIONS
1	Inhibition of ALG3 stimulates cancer cell immunogenic ferroptosis to potentiate immunotherapy. Cellular and Molecular Life Sciences, 2022, 79, .	5.4	11
2	ATM inhibition enhances cancer immunotherapy by promoting mtDNA leakage and cGAS/STING activation. Journal of Clinical Investigation, 2021, 131, .	8.2	107
3	A Calcium-Related Immune Signature in Prognosis Prediction of Patients With Glioma. Frontiers in Cell and Developmental Biology, 2021, 9, 723103.	3.7	1
4	A Dual PI3K/HDAC Inhibitor Induces Immunogenic Ferroptosis to Potentiate Cancer Immune Checkpoint Therapy. Cancer Research, 2021, 81, 6233-6245.	0.9	77
5	Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature, 2020, 588, 693-698.	27.8	218
6	JMJD5 couples with CDK9 to release the paused RNA polymerase II. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19888-19895.	7.1	8
7	Limited MOMP, ATM, and their roles in carcinogenesis and cancer treatment. Cell and Bioscience, 2020, 10, 81.	4.8	8
8	ATM Paradoxically Promotes Oncogenic Transformation via Transcriptional Reprogramming. Cancer Research, 2020, 80, 1669-1680.	0.9	7
9	JMJD6 cleaves MePCE to release positive transcription elongation factor b (P-TEFb) in higher eukaryotes. ELife, 2020, 9, .	6.0	20
10	Necroptosis regulates tumor repopulation after radiotherapy via RIP1/RIP3/MLKL/JNK/IL8 pathway. Journal of Experimental and Clinical Cancer Research, 2019, 38, 461.	8.6	54
11	The Caspase-3/PKCÎ′ Akt/VEGF-A Signaling Pathway Mediates Tumor Repopulation during Radiotherapy. Clinical Cancer Research, 2019, 25, 3732-3743.	7.0	31
12	Non-apoptotic Roles of Caspases in Stem Cell Biology, Carcinogenesis, and Radiotherapy. Current Stem Cell Reports, 2019, 5, 31-37.	1.6	2
13	CRISPR/Cas9-Mediated BRCA1 Knockdown Adipose Stem Cells Promote Breast Cancer Progression. Plastic and Reconstructive Surgery, 2019, 143, 747-756.	1.4	21
14	Caspaseâ€3 regulates the migration, invasion and metastasis of colon cancer cells. International Journal of Cancer, 2018, 143, 921-930.	5.1	169
15	HMGB1 released by irradiated tumor cells promotes living tumor cell proliferation via paracrine effect. Cell Death and Disease, 2018, 9, 648.	6.3	78
16	Novel roles of apoptotic caspases in tumor repopulation, epigenetic reprogramming, carcinogenesis, and beyond. Cancer and Metastasis Reviews, 2018, 37, 227-236.	5.9	37
17	Self-inflicted DNA double-strand breaks sustain tumorigenicity and stemness of cancer cells. Cell Research, 2017, 27, 764-783.	12.0	70
18	Dying glioma cells establish a proangiogenic microenvironment through a caspase 3 dependent mechanism. Cancer Letters, 2017, 385, 12-20.	7.2	81

Xinjian Liu

#	Article	IF	CITATIONS
19	Clipping of arginine-methylated histone tails by JMJD5 and JMJD7. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7717-E7726.	7.1	48
20	Essential roles of Caspase-3 in facilitating Myc-induced genetic instability and carcinogenesis. ELife, 2017, 6, .	6.0	41
21	Rapid Reprogramming of Primary Human Astrocytes into Potent Tumor-Initiating Cells with Defined Genetic Factors. Cancer Research, 2016, 76, 5143-5150.	0.9	28
22	elF4E-phosphorylation-mediated Sox2 upregulation promotes pancreatic tumor cell repopulation after irradiation. Cancer Letters, 2016, 375, 31-38.	7.2	19
23	Redefining the roles of apoptotic factors in carcinogenesis. Molecular and Cellular Oncology, 2016, 3, e1054550.	0.7	7
24	Key roles of necroptotic factors in promoting tumor growth. Oncotarget, 2016, 7, 22219-22233.	1.8	80
25	Caspase-3 Promotes Genetic Instability and Carcinogenesis. Molecular Cell, 2015, 58, 284-296.	9.7	202
26	Caspase 3 Promotes Surviving Melanoma Tumor Cell Growth after Cytotoxic Therapy. Journal of Investigative Dermatology, 2014, 134, 1686-1692.	0.7	94
27	Enhancing the efficiency of direct reprogramming of human primary fibroblasts into dopaminergic neuron-like cells through p53 suppression. Science China Life Sciences, 2014, 57, 867-875.	4.9	26
28	Molecular mechanisms involved in tumor repopulation after radiotherapy. Translational Cancer Research, 2013, 2, 442-448.	1.0	23
29	Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells. Cell Research, 2012, 22, 321-332.	12.0	169
30	Caspase 3–mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nature Medicine, 2011, 17, 860-866.	30.7	705
31	Quantitative, Noninvasive Imaging of Radiation-Induced DNA Double-Strand Breaks <i>In Vivo</i> . Cancer Research, 2011, 71, 4130-4137.	0.9	31
32	Apoptotic Caspases Regulate Induction of iPSCs from Human Fibroblasts. Cell Stem Cell, 2010, 7, 508-520.	11.1	96
33	Enhanced Pancreatic Cancer Gene Therapy by Combination of Adenoviral Vector Expressing c-erb-B2 (Her-2/neu)-Targeted Immunotoxin with a Replication-Competent Adenovirus or Etoposide. Human Gene Therapy, 2010, 21, 157-170.	2.7	10