
Colm O'Dwyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1162795/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methods to Tune the Optical Response of Porous Photonic Crystal Structures. ECS Meeting Abstracts, 2022, MA2022-01, 1984-1984.	0.0	0
2	Ampero-Coulometry: A New Technique for Understanding Lithium-Sulfur Electrochemistry. ECS Meeting Abstracts, 2022, MA2022-01, 111-111.	0.0	0
3	Operando Photonic Stopband Monitoring of Lithium-Ion Battery Electrodes. ECS Meeting Abstracts, 2022, MA2022-01, 112-112.	0.0	Ο
4	(Digital Presentation) Water-Soluble Binders That Enhance Electrochemical Sodium-Ion Storage Properties of NaTi ₂ (PO ₄) ₃ Nanoparticle Anodes. ECS Meeting Abstracts, 2022, MA2022-01, 100-100.	0.0	0
5	Structural and Electronic Properties of Polycrystalline InAs Thin Films Deposited on Silicon Dioxide and Glass at Temperatures below 500 °C. Crystals, 2021, 11, 160.	1.0	3
6	Modulating Conductivity in Paintable Films from Solvent-Exfoliated Inks of 2D MoS2 and Bi2te3. ECS Meeting Abstracts, 2021, MA2021-01, 654-654.	0.0	0
7	A Comparison of Transition Metal Oxide Ordered Macroporous Materials Used in Battery Electrodes. ECS Meeting Abstracts, 2021, MA2021-01, 964-964.	0.0	0
8	(Invited) Metal Assisted Chemical Etching of Silicon Nanowires: Quantum Confinement for Photon Emission and Phonon Transport. ECS Meeting Abstracts, 2021, MA2021-01, 1038-1038.	0.0	0
9	Photonic Stopband Tuning in Metallo-Dielectric Photonic Crystals. ECS Journal of Solid State Science and Technology, 2021, 10, 085001.	0.9	6
10	High Hole Mobility Polycrystalline GaSb Thin Films. Crystals, 2021, 11, 1348.	1.0	3
11	Review—Energy Autonomous Wearable Sensors for Smart Healthcare: A Review. Journal of the Electrochemical Society, 2020, 167, 037516.	1.3	74
12	Germanium tin alloy nanowires as anode materials for high performance Li-ion batteries. Nanotechnology, 2020, 31, 165402.	1.3	15
13	Quantifying the Effect of Electronic Conductivity on the Rate Performance of Nanocomposite Battery Electrodes. ACS Applied Energy Materials, 2020, 3, 2966-2974.	2.5	75
14	Long Cycle Life, Highly Ordered SnO ₂ /GeO ₂ Nanocomposite Inverse Opal Anode Materials for Liâ€lon Batteries. Advanced Functional Materials, 2020, 30, 2005073.	7.8	39
15	Directly Grown Germanium Nanowires from Stainless Steel: High-performing Anodes for Li-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 11811-11819.	2.5	14
16	Using chronoamperometry to rapidly measure and quantitatively analyse rate-performance in battery electrodes. Journal of Power Sources, 2020, 468, 228220.	4.0	16
17	Evolution of 3D Printing Methods and Materials for Electrochemical Energy Storage. Advanced Materials, 2020, 32, e2000556.	11.1	134
18	Self-Assembly of Porphyrin Nanostructures at the Interface between Two Immiscible Liquids. Journal of Physical Chemistry C, 2020, 124, 6929-6937.	1.5	16

#	Article	IF	CITATIONS
19	NiF ₂ Nanorod Arrays for Supercapattery Applications. ACS Omega, 2020, 5, 9768-9774.	1.6	19
20	Additive manufacturing for energy storage: Methods, designs and materialÂselection for customizable 3D printed batteries and supercapacitors. Current Opinion in Electrochemistry, 2020, 20, 46-53.	2.5	55
21	Semiconducting Metal Oxide Photonic Crystal Plasmonic Photocatalysts. Advanced Materials Interfaces, 2020, 7, 1901805.	1.9	26
22	Tracking Compression Changes in an Aqueous Electrolyte for Real-Time H ₂ and O ₂ Gas Evolution Quantification during Total Water Splitting Using BARDS. ACS Applied Energy Materials, 2020, 3, 2000-2009.	2.5	1
23	Architected porous metals in electrochemical energy storage. Current Opinion in Electrochemistry, 2020, 21, 201-208.	2.5	37
24	Filling in the gaps: The nature of light transmission through solvent-filled inverse opal photonic crystals. Physical Review Materials, 2020, 4, .	0.9	13
25	Communication—Conductive Paintable 2D Layered MoS2 Inks. ECS Journal of Solid State Science and Technology, 2020, 9, 093015.	0.9	2
26	High Charge and Discharge Rate Limitations in Ordered Macroporous Li-ion Battery Materials. Journal of the Electrochemical Society, 2020, 167, 140532.	1.3	3
27	(Invited) Development of Nanoporous Structures and Oscillatory Behavior During Anodization of n-InP in Alkaline Electrolytes. ECS Transactions, 2020, 98, 89-106.	0.3	0
28	Ordered Macroporous Photonic Crystal Hot Electron Plasmonic Photocatalysts. ECS Transactions, 2020, 98, 53-62.	0.3	1
29	How Light Passes Through Ordered Macroporous Photonic Crystals Immersed in Solvents. ECS Transactions, 2020, 98, 75-85.	0.3	0
30	Photoconductive Solution Processed ZnO Quasi-superlattice Films. ECS Transactions, 2020, 98, 151-158.	0.3	0
31	Preface—Focus Issue on 2D Layered Materials: From Fundamental Science to Applications. ECS Journal of Solid State Science and Technology, 2020, 9, 090001.	0.9	0
32	Preface—Focus Issue on 2D Layered Materials: From Fundamental Science to Applications. Journal of the Electrochemical Society, 2020, 167, 140001.	1.3	0
33	Ordered Macroporous Photonic Crystal Hot Electron Plasmonic Photocatalysts. ECS Meeting Abstracts, 2020, MA2020-02, 1211-1211.	0.0	0
34	Solution Deposition and Patterning of Compound Semiconductor Metal Oxide Thin Films and Nanowire Networks. ECS Meeting Abstracts, 2020, MA2020-02, 1968-1968.	0.0	0
35	(Invited) Development of Nanoporous Structures and Oscillatory Behavior During Anodization of n-InP in Alkaline Electrolytes. ECS Meeting Abstracts, 2020, MA2020-02, 1214-1214.	0.0	0
36	How Light Passes Through Ordered Macroporous Photonic Crystals Immersed in Solvents. ECS Meeting Abstracts, 2020, MA2020-02, 1213-1213.	0.0	0

#	Article	IF	CITATIONS
37	The Response of Fast Discharge and Charge Rates of Electrodeposited V ₂ O ₅ Inverse Opal Networks in Lithium Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 1451-1451.	0.0	0
38	Photoconductive Solution Processed ZnO Quasi-superlattice Films. ECS Meeting Abstracts, 2020, MA2020-02, 1938-1938.	0.0	0
39	Standardization of research methods employed in assessing the interaction between metallic-based nanoparticles and the blood-brain barrier: Present and future perspectives. Journal of Controlled Release, 2019, 296, 202-224.	4.8	12
40	Anodic Formation of Nanoporous Indium Phosphide in KOH Electrolytes: Effects of Temperature and Concentration. Journal of the Electrochemical Society, 2019, 166, H3097-H3106.	1.3	2
41	One-Step Fabrication of GeSn Branched Nanowires. Chemistry of Materials, 2019, 31, 4016-4024.	3.2	30
42	Cobalt-based electrode materials for sodium-ion batteries. Chemical Engineering Journal, 2019, 370, 185-207.	6.6	118
43	Etching Mechanisms in III-V Semiconductors: Electrochemical Etching of Indium Phosphide. ECS Transactions, 2019, 92, 1-17.	0.3	0
44	NaV2O5 from Sodium Ion-Exchanged Vanadium Oxide Nanotubes and Its Efficient Reversible Lithiation as a Li-Ion Anode Material. ACS Applied Energy Materials, 2019, 2, 822-832.	2.5	24
45	Evaluating the Surface Chemistry of Black Phosphorus during Ambient Degradation. Langmuir, 2019, 35, 2172-2178.	1.6	41
46	Cobalt Phosphate-Based Supercapattery as Alternative Power Source for Implantable Medical Devices. ACS Applied Energy Materials, 2019, 2, 569-578.	2.5	66
47	Etching Mechanisms in III-V Semiconductors: Electrochemical Etching of Indium Phosphide. ECS Meeting Abstracts, 2019, , .	0.0	0
48	Polysulfide Binding to Several Nanoscale Magnéli Phases Synthesized in Carbon for Longâ€Life Lithium–Sulfur Battery Cathodes. ChemSusChem, 2018, 11, 1838-1848.	3.6	19
49	Functionalization of SiO ₂ Surfaces for Si Monolayer Doping with Minimal Carbon Contamination. ACS Applied Materials & Interfaces, 2018, 10, 2191-2201.	4.0	20
50	Preface—Focus Issue on Processes at the Semiconductor-Solution Interface. Journal of the Electrochemical Society, 2018, 165, Y5-Y5.	1.3	0
51	3D open-worked inverse opal TiO2 and GeO2 materials for long life, high capacity Li-ion battery anodes. Solid State Ionics, 2018, 314, 195-203.	1.3	21
52	High capacity binder-free nanocrystalline GeO2 inverse opal anodes for Li-ion batteries with long cycle life and stable cell voltage. Nano Energy, 2018, 43, 11-21.	8.2	78
53	Raman thermometry analysis: Modelling assumptions revisited. Applied Thermal Engineering, 2018, 130, 1175-1181.	3.0	18
54	Comparing Thermal and Chemical Removal of Nanoparticle Stabilizing Ligands: Effect on Catalytic Activity and Stability. ACS Applied Nano Materials, 2018, 1, 7129-7138.	2.4	37

#	Article	IF	CITATIONS
55	(Invited) Electrochemical Formation of Nanoporous Indium Phosphide in KOH Electrolytes. ECS Transactions, 2018, 86, 15-35.	0.3	0
56	Two-Dimensional Materials and Their Role in Emerging Electronic and Photonic Devices. Electrochemical Society Interface, 2018, 27, 53-58.	0.3	5
57	Hybrid composite polyaniline-nickel hydroxide electrode materials for supercapacitor applications. Heliyon, 2018, 4, e00801.	1.4	20
58	Tetrahedral framework of inverse opal photonic crystals defines the optical response and photonic band gap. Journal of Applied Physics, 2018, 124, .	1.1	17
59	NiVO ₃ fused oxide nanoparticles – an electrochemically stable intercalation anode material for lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 18103-18115.	5.2	14
60	Annealing environment effects on the electrochemical behavior of supercapacitors using Ni foam current collectors. Materials Research Express, 2018, 5, 125004.	0.8	8
61	Metal-free heterogeneous and mesoporous biogenic graphene-oxide nanoparticle-catalyzed synthesis of bioactive benzylpyrazolyl coumarin derivatives. RSC Advances, 2018, 8, 17373-17379.	1.7	26
62	Covalent Functionalization of Few-Layer Black Phosphorus Using Iodonium Salts and Comparison to Diazonium Modified Black Phosphorus. Chemistry of Materials, 2018, 30, 4667-4674.	3.2	79
63	Model of Formation and Propagation of Nanoporous Structures in Indium Phosphide during Anodisation in Aqueous KOH. ECS Transactions, 2018, 85, 1335-1348.	0.3	0
64	Low-Temperature Ionic Layer Adsorption and Reaction Grown Anatase TiO2 Nanocrystalline Films for Efficient Perovskite Solar Cell and Gas Sensor Applications. Scientific Reports, 2018, 8, 11016.	1.6	36
65	Large Area Growth of MoS2 By Chemical Vapour Deposition. ECS Meeting Abstracts, 2018, , .	0.0	1
66	(Invited) Patterning Transparent and Antireflective Compound Semiconductor Oxide Thin Films and Nanowire Networks from Solution. ECS Meeting Abstracts, 2018, , .	0.0	0
67	Investigating Polycrystalline III-V Thin Films As Channel Materials for "Above IC―Logic and Memory Applications. ECS Meeting Abstracts, 2018, , .	0.0	0
68	(Invited) Electrochemical Formation of Nanoporous Indium Phosphide in KOH Electrolytes. ECS Meeting Abstracts, 2018, , .	0.0	0
69	(Invited) Antireflective and Sub-Band Pumped Photoconductive Solution Processed ZnO and Al:ZnO Quasi-Superlattice Films. ECS Meeting Abstracts, 2018, , .	0.0	0
70	Scientific and Technical Challenges in Thermal Transport and Thermoelectric Materials and Devices. ECS Journal of Solid State Science and Technology, 2017, 6, N3058-N3064.	0.9	19
71	Rutile TiO ₂ Inverse Opal Anodes for Liâ€ion Batteries with Long Cycle Life, Highâ€Rate Capability, and High Structural Stability. Advanced Energy Materials, 2017, 7, 1602291.	10.2	93
72	Carbon-Coated Honeycomb Ni-Mn-Co-O Inverse Opal: A High Capacity Ternary Transition Metal Oxide Anode for Li-ion Batteries. Scientific Reports, 2017, 7, 42263.	1.6	49

#	Article	IF	CITATIONS
73	The effect of particle size, morphology and C-rates on 3D structured Co ₃ O ₄ inverse opal conversion mode anode materials. Materials Research Express, 2017, 4, 025011.	0.8	22
74	Rapid, Low-Temperature Synthesis of Germanium Nanowires from Oligosilylgermane Precursors. Chemistry of Materials, 2017, 29, 4351-4360.	3.2	25
75	V ₂ O ₃ Polycrystalline Nanorod Cathode Materials for Liâ€ion Batteries with Long Cycle Life and High Capacity Retention. ChemElectroChem, 2017, 4, 2037-2044.	1.7	26
76	Liquid-Phase Monolayer Doping of InGaAs with Si-, S-, and Sn-Containing Organic Molecular Layers. ACS Omega, 2017, 2, 1750-1759.	1.6	9
77	The Influence of Colloidal Opal Template and Substrate Type on 3D Macroporous Single and Binary Vanadium Oxide Inverse Opal Electrodeposition. Journal of the Electrochemical Society, 2017, 164, D111-D119.	1.3	7
78	Optical reflectance of solution processed quasi-superlattice ZnO and Al-doped ZnO (AZO) channel materials. Journal Physics D: Applied Physics, 2017, 50, 16LT01.	1.3	6
79	Influence of Binders and Solvents on Stability of Ru/RuO _{<i>x</i>} Nanoparticles on ITO Nanocrystals as Li–O ₂ Battery Cathodes. ChemSusChem, 2017, 10, 575-586.	3.6	25
80	Electrochemical Pore Formation in InP: Understanding and Controlling Pore Morphology. ECS Transactions, 2017, 75, 29-43.	0.3	3
81	Process of Formation of Porous Layers in n-InP. ECS Transactions, 2017, 77, 67-96.	0.3	3
82	Large Block Copolymer Self-Assembly for Fabrication of Subwavelength Nanostructures for Applications in Optics. Nano Letters, 2017, 17, 2973-2978.	4.5	72
83	Preface—Focus Issue on Thermoelectric Materials & Devices: Phonon Engineering, Advanced Materials and Thermal Transport. ECS Journal of Solid State Science and Technology, 2017, 6, Y3-Y3.	0.9	3
84	Solution Processable Metal Oxide Thin Film Deposition and Material Growth for Electronic and Photonic Devices. Advanced Materials Interfaces, 2017, 4, 1600610.	1.9	70
85	Patterning optically clear films: Coplanar transparent and color-contrasted thin films from interdiffused electrodeposited and solution-processed metal oxides. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 020602.	0.9	1
86	Gold sensitized sprayed SnO2 nanostructured film for enhanced LPG sensing. Journal of Analytical and Applied Pyrolysis, 2017, 124, 362-368.	2.6	32
87	Tailoring Asymmetric Dischargeâ€Charge Rates and Capacity Limits to Extend Liâ€O ₂ Battery Cycle Life. ChemElectroChem, 2017, 4, 628-635.	1.7	4
88	Rectifiers, MOS Diodes and LEDs Made of Fully Porous GaN Produced by Chemical Vapor Deposition. ECS Journal of Solid State Science and Technology, 2017, 6, R143-R148.	0.9	1
89	2D Nanosheet Paint from Solvent-Exfoliated Bi ₂ Te ₃ Ink. Chemistry of Materials, 2017, 29, 7390-7400.	3.2	16
90	Solution processed ZnO homogeneous quasisuperlattice materials. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 061517.	0.9	3

#	Article	IF	CITATIONS
91	Natural Carbonized Sugar as a Low-Temperature Ammonia Sensor Material: Experimental, Theoretical, and Computational Studies. ACS Applied Materials & Interfaces, 2017, 9, 43051-43060.	4.0	32
92	The Nature of Silicon Nanowire Roughness and Thermal Conductivity Suppression by Phonon Scattering Mechanisms. ECS Journal of Solid State Science and Technology, 2017, 6, N3029-N3035.	0.9	10
93	Transparent Antireflective Layers of Oxide Nanowires Grown from Thin Films by Pressurized Contact Interdiffusion Processes. ECS Journal of Solid State Science and Technology, 2017, 6, N227-N235.	0.9	0
94	Life cycle assessment of lithium-air battery cells. Journal of Cleaner Production, 2016, 135, 299-311.	4.6	73
95	Colorâ€Coded Batteries – Electroâ€Photonic Inverse Opal Materials for Enhanced Electrochemical Energy Storage and Optically Encoded Diagnostics. Advanced Materials, 2016, 28, 5681-5688.	11.1	44
96	Hierarchical NiO–In ₂ O ₃ microflower (3D)/ nanorod (1D) hetero-architecture as a supercapattery electrode with excellent cyclic stability. Journal of Materials Chemistry A, 2016, 4, 4820-4830.	5.2	102
97	Optimizing the structure and yield of vanadium oxide nanotubes by periodic 2D layer scrolling. RSC Advances, 2016, 6, 40932-40944.	1.7	18
98	2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion. Science and Technology of Advanced Materials, 2016, 17, 563-582.	2.8	77
99	Nanopatterning by large block copolymers for application in photonic devices (Conference) Tj ETQq1 1 0.78431	4 rgBT /Ov	verlock 10 Tf
100	The structural conversion from α-AgVO ₃ to β-AgVO ₃ : Ag nanoparticle decorated nanowires with application as cathode materials for Li-ion batteries. Nanoscale, 2016, 8, 16266-16275.	2.8	47
101	Growing Oxide Nanowires and Nanowire Networks by Solid State Contact Diffusion into Solution-Processed Thin Films. Small, 2016, 12, 5954-5962.	5.2	3
102	Assessing Charge Contribution from Thermally Treated Ni Foam as Current Collectors for Li-Ion Batteries. Journal of the Electrochemical Society, 2016, 163, A1805-A1811.	1.3	14
103	Self-Healing Thermal Annealing: Surface Morphological Restructuring Control of GaN Nanorods. Crystal Growth and Design, 2016, 16, 6769-6775.	1.4	10
104	Solvent-less method for efficient photocatalytic α-Fe2O3 nanoparticles using macromolecular polymeric precursors. New Journal of Chemistry, 2016, 40, 6768-6776.	1.4	23
105	Fabrication of MoS ₂ Nanowire Arrays and Layered Structures via the Selfâ€Assembly of Block Copolymers. Advanced Materials Interfaces, 2016, 3, 1500596.	1.9	23
106	Examining the Role of Electrolyte and Binders in Determining Discharge Product Morphology and Cycling Performance of Carbon Cathodes in Li-O2Batteries. Journal of the Electrochemical Society, 2016, 163, A43-A49.	1.3	28
107	Comparative Electrochemical Charge Storage Properties of Bulk and Nanoscale Vanadium Oxide Electrodes. Journal of Solid State Electrochemistry, 2016, 20, 1445-1458.	1.2	27
108	High performance inverse opal Li-ion battery with paired intercalation and conversion mode electrodes. Journal of Materials Chemistry A, 2016, 4, 4448-4456.	5.2	34

#	Article	IF	CITATIONS
109	Mesoporosity in doped silicon nanowires from metal assisted chemical etching monitored by phonon scattering. Semiconductor Science and Technology, 2016, 31, 014003.	1.0	14
110	Effect of Annealing on the Development of Fully Transparent Ternary V-O-Na-Si Mixed Metal Oxide Thin Films from Polymer-Assisted Dip-Coated V ₂ O ₅ . ECS Journal of Solid State Science and Technology, 2016, 5, R3100-R3106.	0.9	6
111	Quantum Confined Intense Red Luminescence from Large Area Monolithic Arrays of Mesoporous and Nanocrystal-Decorated Silicon Nanowires for Luminescent Devices. ECS Journal of Solid State Science and Technology, 2016, 5, R3059-R3066.	0.9	2
112	Crystallizing Vanadium Pentoxide Nanostructures in the Solid-State Using Modified Block Copolymer and Chitosan Complexes. Journal of Nanomaterials, 2015, 2015, 1-13.	1.5	14
113	Artificial opal photonic crystals and inverse opal structures – fundamentals and applications from optics to energy storage. Journal of Materials Chemistry C, 2015, 3, 6109-6143.	2.7	254
114	Pseudocapacitance of α-CoMoO4 nanoflakes in non-aqueous electrolyte and its bi-functional electro catalytic activity for methanol oxidation. International Journal of Hydrogen Energy, 2015, 40, 16297-16305.	3.8	37
115	Solution processable broadband transparent mixed metal oxide nanofilm optical coatings via substrate diffusion doping. Nanoscale, 2015, 7, 20227-20237.	2.8	11
116	Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Physical Chemistry Chemical Physics, 2015, 17, 4799-4844.	1.3	237
117	Electrochemical investigation of the role of MnO ₂ nanorod catalysts in water containing and anhydrous electrolytes for Li–O ₂ battery applications. Physical Chemistry Chemical Physics, 2015, 17, 6748-6759.	1.3	28
118	Formation Mechanism of Metal–Molecule–Metal Junctions: Molecule-Assisted Migration on Metal Defects. Journal of Physical Chemistry C, 2015, 119, 19438-19451.	1.5	14
119	Linking Precursor Alterations to Nanoscale Structure and Optical Transparency in Polymer Assisted Fast-Rate Dip-Coating of Vanadium Oxide Thin Films. Scientific Reports, 2015, 5, 11574.	1.6	15
120	NiO hybrid nanoarchitecture-based pseudocapacitor in organic electrolyte with high rate capability and cycle life. Ionics, 2015, 21, 2623-2631.	1.2	19
121	Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes. Nano Research, 2015, 8, 1395-1442.	5.8	106
122	3D Vanadium Oxide Inverse Opal Growth by Electrodeposition. Journal of the Electrochemical Society, 2015, 162, D605-D612.	1.3	32
123	Electrodeposited Structurally Stable V ₂ O ₅ Inverse Opal Networks as High Performance Thin Film Lithium Batteries. ACS Applied Materials & Interfaces, 2015, 7, 27006-27015.	4.0	81
124	Solid electrolyte interphases at Li-ion battery graphitic anodes in propylene carbonate (PC)-based electrolytes containing FEC, LiBOB, and LiDFOB as additives. Chemical Physics Letters, 2015, 618, 208-213.	1.2	41
125	Epitaxial growth of (0001) oriented porous GaN layers by chemical vapour deposition. CrystEngComm, 2014, 16, 10255-10261.	1.3	9
126	Light Scattering Investigation of 2D and 3D Opal Template Formation on Hydrophilized Surfaces. ECS Transactions, 2014, 58, 9-18.	0.3	6

#	Article	lF	CITATIONS
127	Novel Solid-State Route to Nanostructured Tin, Zinc and Cerium Oxides as Potential Materials for Sensors. Journal of Nanoscience and Nanotechnology, 2014, 14, 6748-6753.	0.9	5
128	Germanium Oxide Removal by Citric Acid and Thiol Passivation from Citric Acid-Terminated Ge(100). Langmuir, 2014, 30, 14123-14127.	1.6	37
129	Stability of Ultrathin Nanocomposite Polymer Films Controlled by the Embedding of Gold Nanoparticles. ACS Applied Materials & Interfaces, 2014, 6, 20758-20767.	4.0	31
130	Polycrystalline Vanadium Oxide Nanorods: Growth, Structure and Improved Electrochemical Response as a Li-Ion Battery Cathode Material. Journal of the Electrochemical Society, 2014, 161, A1321-A1329.	1.3	31
131	Palladium Nanoparticles as Catalysts for Li-O ₂ Battery Cathodes. ECS Transactions, 2014, 58, 21-29.	0.3	7
132	The Origin of Shape Sensitivity in Palladiumâ€Catalyzed Suzuki–Miyaura Cross Coupling Reactions. Angewandte Chemie - International Edition, 2014, 53, 4142-4145.	7.2	116
133	Ordered 2D Colloidal Photonic Crystals on Gold Substrates by Surfactantâ€Assisted Fastâ€Rate Dip Coating. Small, 2014, 10, 1895-1901.	5.2	55
134	Density functional theory calculations for ethylene carbonate-based binary electrolyte mixtures in lithium ion batteries. Current Applied Physics, 2014, 14, 349-354.	1.1	36
135	The influence of carrier density and doping type on lithium insertion and extraction processes at silicon surfaces. Electrochimica Acta, 2014, 135, 356-367.	2.6	26
136	Optimizing Vanadium Pentoxide Thin Films and Multilayers from Dip-Coated Nanofluid Precursors. ACS Applied Materials & Interfaces, 2014, 6, 2031-2038.	4.0	21
137	Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Research, 2014, 7, 1-62.	5.8	292
138	Investigations into Structure and Chemistry of 1D, 2D and 3D Structured Vanadium Oxide Nanomaterials for Li-Ion Batteries. ECS Transactions, 2014, 58, 3-12.	0.3	4
139	2D and 3D vanadium oxide inverse opals and hollow sphere arrays. CrystEngComm, 2014, 16, 10804-10815.	1.3	37
140	Photonic Crystals: Ordered 2D Colloidal Photonic Crystals on Gold Substrates by Surfactantâ€Assisted Fastâ€Rate Dip Coating (Small 10/2014). Small, 2014, 10, 1894-1894.	5.2	0
141	Pore size modulation in electrochemically etched macroporous p-type silicon monitored by FFT impedance spectroscopy and Raman scattering. Physical Chemistry Chemical Physics, 2014, 16, 255-263.	1.3	28
142	Stability, Oxidation, and Shape Evolution of PVP-Capped Pd Nanocrystals. Journal of Physical Chemistry C, 2014, 118, 6522-6530.	1.5	57
143	The Role of Carbonate and Sulfite Additives in Propylene Carbonate-Based Electrolytes on the Formation of SEI Layers at Graphitic Li-Ion Battery Anodes. Journal of the Electrochemical Society, 2014, 161, A1415-A1421.	1.3	36
144	Fully Porous GaN p–n Junction Diodes Fabricated by Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2014, 6, 17954-17964.	4.0	25

#	Article	IF	CITATIONS
145	Luminescent Gold and Silver Complexes with the Monophosphane 1-(PPh ₂)-2-Me-C ₂ B ₁₀ H ₁₀ and Their Conversion to Gold Micro- and Superstructured Materials. Inorganic Chemistry, 2014, 53, 7260-7269.	1.9	15
146	Synthesis and electrochemical properties of vanadium oxide materials and structures as Li-ion battery positive electrodes. Journal of Power Sources, 2014, 267, 831-873.	4.0	138
147	Key scientific challenges in current rechargeable non-aqueous Li–O2 batteries: experiment and theory. Physical Chemistry Chemical Physics, 2014, 16, 12093.	1.3	120
148	On the Use of Gas Diffusion Layers as Current Collectors in Li-O ₂ Battery Cathodes. Journal of the Electrochemical Society, 2014, 161, A1964-A1968.	1.3	18
149	Porous GaN and High-κ MgO–GaN MOS Diode Layers Grown in a Single Step on Silicon. Chemistry of Materials, 2014, 26, 1243-1249.	3.2	6
150	Enhanced Catalytic Activity of High-Index Faceted Palladium Nanoparticles in Suzuki–Miyaura Coupling Due to Efficient Leaching Mechanism. ACS Catalysis, 2014, 4, 3105-3111.	5.5	83
151	Synthetic Routes for the Preparation of Ordered Vanadium Oxide Inverted Opal Electrodes for Li-Ion Batteries. ECS Transactions, 2014, 58, 7-14.	0.3	2
152	High-Performance Germanium Nanowire-Based Lithium-Ion Battery Anodes Extending over 1000 Cycles Through in Situ Formation of a Continuous Porous Network. Nano Letters, 2014, 14, 716-723.	4.5	317
153	Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance. Journal of Materials Chemistry A, 2014, 2, 9433.	5.2	144
154	Large directional conductivity change in chemically stable layered thin films of vanadium oxide and a 1D metal complex. Journal of Materials Chemistry C, 2013, 1, 5675.	2.7	19
155	Chitosan gel film bandages: Correlating structure, composition, and antimicrobial properties. Journal of Applied Polymer Science, 2013, 128, 3939-3948.	1.3	23
156	Core–Shell Tin Oxide, Indium Oxide, and Indium Tin Oxide Nanoparticles on Silicon with Tunable Dispersion: Electrochemical and Structural Characteristics as a Hybrid Li-Ion Battery Anode. ACS Applied Materials & Interfaces, 2013, 5, 8195-8202.	4.0	27
157	Nanoscale Dynamics and Protein Adhesivity of Alkylamine Self-Assembled Monolayers on Graphene. Langmuir, 2013, 29, 7271-7282.	1.6	27
158	Carbon nanocage supported synthesis of V2O5 nanorods and V2O5/TiO2 nanocomposites for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 12568.	5.2	39
159	Solvent and stabilizer free growth of Ag and Pd nanoparticles using metallic salts/cyclotriphosphazenes mixtures. Materials Chemistry and Physics, 2013, 143, 124-132.	2.0	6
160	Three-Dimensionally Ordered Hierarchically Porous Tin Dioxide Inverse Opals and Immobilization of Palladium Nanoparticles for Catalytic Applications. Chemistry of Materials, 2013, 25, 4312-4320.	3.2	75
161	Low resistivity electrical contacting of porous n-type GaN layers due to reduced workfunction intermetallic seed layers. Proceedings of SPIE, 2013, , .	0.8	0
162	Doping controlled roughness and defined mesoporosity in chemically etched silicon nanowires with tunable conductivity. Journal of Applied Physics, 2013, 114, 034309.	1.1	17

#	Article	IF	CITATIONS
163	Palladium-Catalyzed Coupling Reactions for the Functionalization of Si Surfaces: Superior Stability of Alkenyl Monolayers. Langmuir, 2013, 29, 11950-11958.	1.6	15
164	Solid State Pathways to Complex Shape Evolution and Tunable Porosity during Metallic Crystal Growth. Scientific Reports, 2013, 3, 2642.	1.6	22
165	The stability of thin polymer films as controlled by changes in uniformly sputtered gold. Soft Matter, 2013, 9, 2695.	1.2	21
166	Propagation of nanopores during anodic etching of n-InP in KOH. Physical Chemistry Chemical Physics, 2013, 15, 15135.	1.3	14
167	Containing the catalyst: diameter controlled Ge nanowire growth. Journal of Materials Chemistry C, 2013, 1, 4450.	2.7	11
168	Compositional characterisation of metallurgical grade silicon and porous silicon nanosponge particles. RSC Advances, 2013, 3, 19393.	1.7	11
169	Solution and surfactant-free growth of supported high index facet SERS active nanoparticles of rhenium by phase demixing. Journal of Materials Chemistry A, 2013, 1, 1566-1572.	5.2	20
170	Effect of Au Nanoparticle Spatial Distribution on the Stability of Thin Polymer Films. Langmuir, 2013, 29, 6706-6714.	1.6	24
171	Pore Propagation Directions and Nanoporous Domain Shape in n-InP Anodized in KOH. Journal of the Electrochemical Society, 2013, 160, D260-D270.	1.3	11
172	Fractal Patterning of Nanoparticles on Polymer Films and Their SERS Capabilities. ACS Applied Materials & Interfaces, 2013, 5, 8655-8662.	4.0	38
173	Self-Seeded Growth of Germanium Nanowires: Coalescence and Ostwald Ripening. Chemistry of Materials, 2013, 25, 215-222.	3.2	34
174	Electrochemical Formation of Ordered Pore Arrays in InP in KCl. ECS Transactions, 2013, 50, 377-392.	0.3	9
175	Pore Formation in InP Anodized in KOH: Effect of Temperature and Concentration. ECS Transactions, 2013, 50, 131-141.	0.3	3
176	Current-Line Oriented Pore Formation in n-InP Anodized in KOH. ECS Transactions, 2013, 50, 143-153.	0.3	3
177	Dependence of Current on Porous Layer Structure during Anodization of n-InP in Aqueous KOH Electrolytes. ECS Transactions, 2013, 50, 191-203.	0.3	1
178	Mechanism that Dictates Pore Width and <111>A Pore Propagation in InP. ECS Transactions, 2013, 50, 319-334.	0.3	3
179	Metal Catalyzed Porous n-type GaN Layers: Low Resistivity Ohmic Contacting and Single-Step MgO/GaN Diode Formation. ECS Transactions, 2013, 53, 17-27.	0.3	2
180	Rechargeable Li-Ion Battery Anode of Indium Oxide with Visible to Infra-Red Transparency. ECS Transactions, 2013, 53, 53-61.	0.3	3

#	Article	IF	CITATIONS
181	Epitaxial growth of visible to infra-red transparent conducting In ₂ O ₃ nanodot dispersions and reversible charge storage as a Li-ion battery anode. Nanotechnology, 2013, 24, 065401.	1.3	18
182	Fabrication of p-type porous GaN on silicon and epitaxial GaN. Applied Physics Letters, 2013, 103, .	1.5	11
183	(Invited) Cessation of Porous Layer Growth in n-InP Anodised in KOH. ECS Transactions, 2013, 53, 65-79.	0.3	2
184	Structural and Electrochemical Characterization of Thermally Treated Vanadium Oxide Nanotubes for Li-lon Batteries. ECS Transactions, 2013, 50, 165-174.	0.3	10
185	Effect of Current Density on Pore Formation in n-InP in KOH. ECS Transactions, 2013, 58, 25-38.	0.3	1
186	Epitaxial growth of an antireflective, conductive, graded index ITO nanowire layer. Frontiers in Physics, 2013, 1, .	1.0	4
187	Core-Shell ZnO Nanorod Lasers. ECS Transactions, 2012, 45, 51-59.	0.3	1
188	Pattern formation induced by an electric field in a polymer–air–polymer thin film system. Soft Matter, 2012, 8, 6333.	1.2	36
189	Layered Graphitic Carbon Host Formation during Liquid-free Solid State Growth of Metal Pyrophosphates. Inorganic Chemistry, 2012, 51, 6228-6236.	1.9	19
190	Reduced Workfunction Intermetallic Seed Layers Allow Growth of Porous <i>n</i> -GaN and Low Resistivity, Ohmic Electron Transport. ACS Applied Materials & Interfaces, 2012, 4, 6927-6934.	4.0	8
191	Accommodating Curvature in a Highly Ordered Functionalized Metal Oxide Nanofiber: Synthesis, Characterization, and Multiscale Modeling of Layered Nanosheets. Chemistry of Materials, 2012, 24, 3981-3992.	3.2	15
192	Growth of Crystalline Copper Silicide Nanowires in High Yield within a High Boiling Point Solvent System. Chemistry of Materials, 2012, 24, 4319-4325.	3.2	31
193	Current-Line Oriented Pore Formation in n-InP Anodized in KOH. ECS Meeting Abstracts, 2012, , .	0.0	1
194	The Effect of Temperature and Electrolyte Concentration on Porous Layers Formed on InP in KOH. ECS Meeting Abstracts, 2012, , .	0.0	1
195	Polymer/Trimer/Metal Complex Mixtures as Precursors of Gold Nanoparticles: Tuning the Morphology in the Solid-State. Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22, 447-454.	1.9	5
196	Fabrication and Characterization of Single-Crystal Metal-Assisted Chemically Etched Rough Si Nanowires for Lithium-Ion Battery Anodes. ECS Transactions, 2011, 35, 25-34.	0.3	7
197	Raman Scattering Spectroscopy of Metal-Assisted Chemically Etched Rough Si Nanowires. ECS Transactions, 2011, 35, 73-86.	0.3	4
198	Interdigitating Organic Bilayers Direct the Short Interlayer Spacing in Hybrid Organic–Inorganic Layered Vanadium Oxide Nanostructures. Journal of Physical Chemistry B, 2011, 115, 14518-14525.	1.2	18

#	Article	IF	CITATIONS
199	Organic Functionalization of Germanium Nanowires using Arenediazonium Salts. Chemistry of Materials, 2011, 23, 1883-1891.	3.2	38
200	A facile spin-cast route for cation exchange of multilayer perpendicularly-aligned nanorod assemblies. Nanoscale, 2011, 3, 4580.	2.8	35
201	Nanostructured copper oxides and phosphates from a new solid-state route. Inorganica Chimica Acta, 2011, 377, 5-13.	1.2	22
202	Solid-state synthesis of embedded single-crystal metal oxide and phosphate nanoparticles and in situ crystallization. Journal of Colloid and Interface Science, 2011, 362, 21-32.	5.0	8
203	(Invited) Functionalization of Germanium Nanowires. ECS Transactions, 2011, 35, 89-99.	0.3	2
204	Synthesis and Characterization of Layered Vanadium Oxide Nanotubes for Rechargeable Lithium Batteries. ECS Transactions, 2011, 35, 237-245.	0.3	7
205	(Invited) Electrochemical Formation of Nanoporosity in n-InP Anodes in KOH. ECS Transactions, 2011, 35, 29-48.	0.3	3
206	Single-crystal micro/nanostructures and thin films of lamellar molybdenum oxide by solid-state pyrolysis of organometallic derivatives of a cyclotriphosphazene. Journal of Solid State Chemistry, 2010, 183, 1595-1603.	1.4	31
207	Metallophosphazene Precursor Routes to the Solid-State Deposition of Metallic and Dielectric Microstructures and Nanostructures on Si and SiO2. Langmuir, 2010, 26, 10223-10233.	1.6	19
208	Alkane and Alkanethiol Passivation of Halogenated Ge Nanowires. Chemistry of Materials, 2010, 22, 6370-6377.	3.2	42
209	Preferential <111>A Pore Propagation Mechanism in n-InP Anodized in KOH. ECS Transactions, 2009, 16, 393-404.	0.3	2
210	Deconvolution of the Potential and Time Dependence of Electrochemical Porous Semiconductor Formation. ECS Transactions, 2009, 19, 295-304.	0.3	2
211	Reduced Surfactant Uptake in Three Dimensional Assemblies of VO _{<i>x</i>} Nanotubes Improves Reversible Li ⁺ Intercalation and Charge Capacity. Advanced Functional Materials, 2009, 19, 1736-1745.	7.8	80
212	Organometallic Derivatives of Cyclotriphosphazene as Precursors of Nanostructured Metallic Materials: A New Solid State Method. Journal of Inorganic and Organometallic Polymers and Materials, 2009, 19, 507-520.	1.9	20
213	Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices. Nature Nanotechnology, 2009, 4, 239-244.	15.6	157
214	Nanostructured Silicon Containing Materials Derived from Solid State Pyrolysis of Sililated Polyphosphazene Derivatives. Journal of Nanoscience and Nanotechnology, 2009, 9, 1825-1831.	0.9	7
215	Lowâ€Dimensional, Hinged Barâ€code Metal Oxide Layers and Freeâ€Standing, Ordered Organic Nanostructures from Turbostratic Vanadium Oxide. Small, 2008, 4, 990-1000.	5.2	13
216	Electron beam induced electronic transport in alkyl amineâ€intercalated VO _x nanotubes. Physica Status Solidi (B): Basic Research, 2008, 245, 2102-2106.	0.7	2

#	Article	IF	CITATIONS
217	Lightâ€Emitting Diodes with Semiconductor Nanocrystals. Angewandte Chemie - International Edition, 2008, 47, 6538-6549.	7.2	305
218	Synthesis and Characterization of Cyclotriphosphazenes Containing Silicon as Single Solid-State Precursors for the Formation of Silicon/Phosphorus Nanostructured Materials. Inorganic Chemistry, 2008, 47, 11561-11569.	1.9	30
219	Vanadate Conformation Variations in Vanadium Pentoxide Nanostructures. Journal of the Electrochemical Society, 2007, 154, K29.	1.3	65
220	Nanoporous Domains in n-InP Anodized in KOH. ECS Transactions, 2007, 6, 355-366.	0.3	6
221	Atomic Layer Structure of Vanadium Oxide Nanotubes Grown on Nanourchin Structures. Electrochemical and Solid-State Letters, 2007, 10, A111.	2.2	23
222	An Investigation by AFM and TEM of the Mechanism of Anodic Formation of Nanoporosity in n-InP in KOH. Journal of the Electrochemical Society, 2007, 154, H78.	1.3	15
223	Surface quality and surface waves on subwavelength-structured silver films. Physical Review E, 2007, 75, 016612.	0.8	18
224	Anisotropic Vanadium Oxide Nanostructured Host Matrices for Lithium Ion Intercalation. Research Letters in Physical Chemistry, 2007, 2007, 1-5.	0.3	2
225	Functionalization of lamellar molybdenum disulphide nanocomposite with gold nanoparticles. Applied Surface Science, 2007, 253, 3444-3449.	3.1	6
226	The formation of nanotubes and nanocoils of molybdenum disulphide. Applied Surface Science, 2007, 253, 5185-5190.	3.1	27
227	Surfactant-mediated variation of band-edge emission in CdS nanocomposites. Photonics and Nanostructures - Fundamentals and Applications, 2007, 5, 45-52.	1.0	5
228	Sixâ€fold rotationally symmetric vanadium oxide nanostructures by a morphotropic phase transition. Physica Status Solidi (B): Basic Research, 2007, 244, 4157-4160.	0.7	11
229	Towards thiol functionalization of vanadium pentoxide nanotubes using gold nanoparticles. Materials Research Bulletin, 2007, 42, 674-685.	2.7	26
230	In-situ examination of the selective etching of an alkanethiol monolayer covered Au{111} surface. Materials Letters, 2007, 61, 3837-3841.	1.3	4
231	Nano-Urchin:Â The Formation and Structure of High-Density Spherical Clusters of Vanadium Oxide Nanotubes. Chemistry of Materials, 2006, 18, 3016-3022.	3.2	134
232	The optical response of nanostructured surfaces and the composite diffracted evanescent wave model. Nature Physics, 2006, 2, 262-267.	6.5	217
233	The response of nanostructured surfaces in the near field. Nature Physics, 2006, 2, 792-792.	6.5	19
234	Pressure induced anisotropy of electrical conductivity in polycrystalline molybdenum disulfide. Applied Surface Science, 2006, 252, 7941-7947.	3.1	15

#	Article	IF	CITATIONS
235	Effect of Electrolyte Concentration on Anodic Nanoporous Layer Growth for n-InP in Aqueous KOH. ECS Transactions, 2006, 2, 131-141.	0.3	3
236	Anodic Formation and Characterization of Nanoporous InP in Aqueous KOH Electrolytes. Journal of the Electrochemical Society, 2006, 153, G1039.	1.3	28
237	Advancing atomic nanolithography: cold atomic Cs beam exposure of alkanethiol self-assembled monolayers. Journal of Physics: Conference Series, 2005, 19, 109-117.	0.3	3
238	The atom pencil: serial writing in the sub-micrometre domain. Applied Physics B: Lasers and Optics, 2005, 80, 941-944.	1.1	12
239	Atomic nanolithography patterning of submicron features: writing an organic self-assembled monolayer with cold, bright Cs atom beams. Nanotechnology, 2005, 16, 1536-1541.	1.3	15
240	Writing self-assembled monolayers with Cs: Optimization of atomic nanolithography imaging using self-assembled monolayers on gold substrates. Journal of Applied Physics, 2005, 97, 114309.	1.1	6
241	Simultaneous Observation of Current Oscillations and Porous Film Growth during Anodization of InP. Langmuir, 2005, 21, 8090-8095.	1.6	13
242	The Nature of Alkanethiol Self-Assembled Monolayer Adsorption on Sputtered Gold Substrates. Langmuir, 2004, 20, 8172-8182.	1.6	56