## Judith M E M Cosemans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1162793/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Platelet-derived MMP-2 in the prevention of plaque formation: how many strokes is par?. European<br>Heart Journal, 2022, 43, 515-517.                                                                                                      | 2.2 | 2         |
| 2  | Characterization of Atherosclerotic Plaque Coating for Thrombosis Microfluidics Assays. Cellular and Molecular Bioengineering, 2022, 15, 55-65.                                                                                            | 2.1 | 3         |
| 3  | Characterization of cerebral small vessel disease by neutrophil and platelet activation markers using artificial intelligence. Journal of Neuroimmunology, 2022, 367, 577863.                                                              | 2.3 | 6         |
| 4  | The effect of Bruton's tyrosine kinase inhibitor ibrutinib on atherothrombus formation under stenotic flow conditions. Thrombosis Research, 2022, 212, 72-80.                                                                              | 1.7 | 5         |
| 5  | Finding the "switch―in platelet activation: prediction of key mediators involved in reversal of platelet activation using a novel network biology approach. Journal of Proteomics, 2022, 261, 104577.                                      | 2.4 | 3         |
| 6  | In vitro flowâ€based assay: From simple toward more sophisticated models for mimicking hemostasis<br>and thrombosis. Journal of Thrombosis and Haemostasis, 2021, 19, 582-587.                                                             | 3.8 | 14        |
| 7  | The multifaceted contribution of platelets in the emergence and aftermath of acute cardiovascular events. Atherosclerosis, 2021, 319, 132-141.                                                                                             | 0.8 | 25        |
| 8  | Comparison of inhibitory effects of irreversible and reversible Btk inhibitors on platelet function.<br>EJHaem, 2021, 2, 685-699.                                                                                                          | 1.0 | 8         |
| 9  | Inhibition of Phosphodiesterase 3A by Cilostazol Dampens Proinflammatory Platelet Functions. Cells, 2021, 10, 1998.                                                                                                                        | 4.1 | 6         |
| 10 | Wall shear rates in human and mouse arteries: Standardization of hemodynamics for in vitro blood<br>flow assays: Communication from the ISTH SSC subcommittee on biorheology. Journal of Thrombosis<br>and Haemostasis, 2021, 19, 588-595. | 3.8 | 27        |
| 11 | Combined Antiplatelet Therapy Reduces the Proinflammatory Properties of Activated Platelets. TH<br>Open, 2021, 05, e533-e542.                                                                                                              | 1.4 | 5         |
| 12 | Native, Intact Glucagon-Like Peptide 1 Is a Natural Suppressor of Thrombus Growth Under<br>Physiological Flow Conditions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e65-e77.                                           | 2.4 | 14        |
| 13 | Complementary roles of platelet αIIbβ3 integrin, phosphatidylserine exposure and cytoskeletal rearrangement in the release of extracellular vesicles. Atherosclerosis, 2020, 310, 17-25.                                                   | 0.8 | 12        |
| 14 | Vascular protective effect of aspirin and rivaroxaban upon endothelial denudation of the mouse carotid artery. Scientific Reports, 2020, 10, 19360.                                                                                        | 3.3 | 4         |
| 15 | Atherosclerotic plaque injury-mediated murine thrombosis models: advantages and limitations.<br>Platelets, 2020, 31, 439-446.                                                                                                              | 2.3 | 6         |
| 16 | SLC44A2 deficient mice have a reduced response in stenosis but not in hypercoagulability driven venous thrombosis. Journal of Thrombosis and Haemostasis, 2020, 18, 1714-1727.                                                             | 3.8 | 18        |
| 17 | Impact of Deficiency of Intrinsic Coagulation Factors XI and XII on Ex Vivo Thrombus Formation and Clot Lysis. TH Open, 2019, 03, e273-e285.                                                                                               | 1.4 | 7         |
| 18 | Suppressive Role of Tissue Factor Pathway Inhibitor-α in Platelet-Dependent Fibrin Formation under<br>Flow Is Restricted to Low Procoagulant Strength. Thrombosis and Haemostasis, 2018, 118, 502-513.                                     | 3.4 | 14        |

JUDITH M E M COSEMANS

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Variable impairment of platelet functions in patients with severe, genetically linked immune<br>deficiencies. Haematologica, 2018, 103, 540-549.                                                                                | 3.5 | 36        |
| 20 | At the MERcy of platelet primers. Journal of Thrombosis and Haemostasis, 2018, 16, 349-351.                                                                                                                                     | 3.8 | 0         |
| 21 | A synthesis approach of mouse studies to identify genes and proteins in arterial thrombosis and bleeding. Blood, 2018, 132, e35-e46.                                                                                            | 1.4 | 29        |
| 22 | Platelets and Coagulation. , 2017, , 447-462.                                                                                                                                                                                   |     | 4         |
| 23 | Platelet interaction with activated endothelium: mechanistic insights from microfluidics. Blood, 2017, 130, 2819-2828.                                                                                                          | 1.4 | 117       |
| 24 | Dimensional analysis and scaling relevant to flow models of thrombus formation: communication from the SSC of the ISTH. Journal of Thrombosis and Haemostasis, 2016, 14, 619-622.                                               | 3.8 | 27        |
| 25 | Combined Quantification of the Global Proteome, Phosphoproteome, and Proteolytic Cleavage to<br>Characterize Altered Platelet Functions in the Human Scott Syndrome. Molecular and Cellular<br>Proteomics, 2016, 15, 3154-3169. | 3.8 | 52        |
| 26 | Coated platelets function in platelet-dependent fibrin formation via integrin α <sub>Ilb</sub> β <sub>3</sub> and transglutaminase factor XIII. Haematologica, 2016, 101, 427-436.                                              | 3.5 | 57        |
| 27 | Platelet Control of Fibrin Distribution and Microelasticity in Thrombus Formation Under Flow.<br>Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 692-699.                                                         | 2.4 | 53        |
| 28 | Survival protein anoctaminâ€6 controls multiple platelet responses including phospholipid scrambling,<br>swelling, and protein cleavage. FASEB Journal, 2016, 30, 727-737.                                                      | 0.5 | 52        |
| 29 | Acute and persistent platelet and coagulant activities in atherothrombosis. Journal of Thrombosis and Haemostasis, 2015, 13, S272-S280.                                                                                         | 3.8 | 31        |
| 30 | Hyperreactivity of Junctional Adhesion Molecule A-Deficient Platelets Accelerates Atherosclerosis in<br>Hyperlipidemic Mice. Circulation Research, 2015, 116, 587-599.                                                          | 4.5 | 67        |
| 31 | Platelet-Associated Matrix Metalloproteinases Regulate Thrombus Formation and Exert Local<br>Collagenolytic Activity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2554-2561.                                  | 2.4 | 38        |
| 32 | Normal Platelet Activation Profile in Patients with Peripheral Arterial Disease on Aspirin. Thrombosis<br>Research, 2015, 135, 513-520.                                                                                         | 1.7 | 21        |
| 33 | Platelet CD40L Modulates Thrombus Growth Via Phosphatidylinositol 3-Kinase β, and Not Via CD40 and<br>IκB Kinase α. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1374-1381.                                    | 2.4 | 31        |
| 34 | Coordinated Membrane Ballooning and Procoagulant Spreading in Human Platelets. Circulation, 2015, 132, 1414-1424.                                                                                                               | 1.6 | 139       |
| 35 | Chronic arthritis and cardiovascular disease: Altered blood parameters give rise to a prothrombotic propensity. Seminars in Arthritis and Rheumatism, 2014, 44, 345-352.                                                        | 3.4 | 41        |
| 36 | Supporting Roles of Platelet Thrombospondin-1 and CD36 in Thrombus Formation on Collagen.<br>Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1187-1192.                                                           | 2.4 | 59        |

JUDITH M E M COSEMANS

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Acid Sphingomyelinase Regulates Platelet Cell Membrane Scrambling, Secretion, and Thrombus<br>Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 61-71.                             | 2.4  | 56        |
| 38 | Factor XII Regulates the Pathological Process of Thrombus Formation on Ruptured Plaques.<br>Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1674-1680.                                      | 2.4  | 108       |
| 39 | Identification of platelet function defects by multi-parameter assessment of thrombus formation.<br>Nature Communications, 2014, 5, 4257.                                                                 | 12.8 | 191       |
| 40 | Insights into platelet-based control of coagulation. Thrombosis Research, 2014, 133, S139-S148.                                                                                                           | 1.7  | 73        |
| 41 | The effects of arterial flow on platelet activation, thrombus growth, and stabilization.<br>Cardiovascular Research, 2013, 99, 342-352.                                                                   | 3.8  | 89        |
| 42 | Atheroprotective effect of dietary walnut intake in ApoE-deficient mice: Involvement of lipids and coagulation factors. Thrombosis Research, 2013, 131, 411-417.                                          | 1.7  | 44        |
| 43 | Plateletâ€based coagulation: different populations, different functions. Journal of Thrombosis and Haemostasis, 2013, 11, 2-16.                                                                           | 3.8  | 277       |
| 44 | Distinct Role of von Willebrand Factor Triplet Bands in Glycoprotein Ib-Dependent Platelet Adhesion and Thrombus Formation under Flow. Seminars in Thrombosis and Hemostasis, 2013, 39, 306-314.          | 2.7  | 11        |
| 45 | Dual Mechanism of Integrin αIIbβ3 Closure in Procoagulant Platelets. Journal of Biological Chemistry, 2013, 288, 13325-13336.                                                                             | 3.4  | 96        |
| 46 | Measurement of whole blood thrombus formation using parallel-plate flow chambers – a practical guide. Platelets, 2012, 23, 229-242.                                                                       | 2.3  | 127       |
| 47 | Monitoring <i>in vitro</i> thrombus formation with novel microfluidic devices. Platelets, 2012, 23, 501-509.                                                                                              | 2.3  | 48        |
| 48 | Key role of glycoprotein Ib/V/IX and von Willebrand factor in platelet activation-dependent fibrin formation at low shear flow. Blood, 2011, 117, 651-660.                                                | 1.4  | 62        |
| 49 | Protein kinase C mediates platelet secretion and thrombus formation through protein kinase D2.<br>Blood, 2011, 118, 416-424.                                                                              | 1.4  | 49        |
| 50 | Signaling role of CD36 in platelet activation and thrombus formation on immobilized<br>thrombospondin or oxidized lowâ€density lipoprotein. Journal of Thrombosis and Haemostasis, 2011, 9,<br>1835-1846. | 3.8  | 58        |
| 51 | Unravelling the different functions of protein kinase C isoforms in platelets. FEBS Letters, 2011, 585, 1711-1716.                                                                                        | 2.8  | 27        |
| 52 | CD36 as a Multiple-Ligand Signaling Receptor in Atherothrombosis. Cardiovascular and Hematological<br>Agents in Medicinal Chemistry, 2011, 9, 42-55.                                                      | 1.0  | 58        |
| 53 | Potentiating role of Gas6 and Tyro3, Axl and Mer (TAM) receptors in human and murine platelet activation and thrombus stabilization. Journal of Thrombosis and Haemostasis, 2010, 8, 1797-1808.           | 3.8  | 88        |
| 54 | Stabilizing Role of Platelet P2Y12 Receptors in Shear-Dependent Thrombus Formation on Ruptured Plaques. PLoS ONE, 2010, 5, e10130.                                                                        | 2.5  | 42        |

JUDITH M E M COSEMANS

| #  | Article                                                                                                                                                                                                                                         | IF       | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 55 | Spatial Distribution of Factor Xa, Thrombin, and Fibrin(ogen) on Thrombi at Venous Shear. PLoS ONE, 2010, 5, e10415.                                                                                                                            | 2.5      | 69        |
| 56 | Functional Divergence of Platelet Protein Kinase C (PKC) Isoforms in Thrombus Formation on<br>Collagen. Journal of Biological Chemistry, 2010, 285, 23410-23419.                                                                                | 3.4      | 96        |
| 57 | Non-redundant Roles of Phosphoinositide 3-Kinase Isoforms α and β in Glycoprotein VI-induced Platelet<br>Signaling and Thrombus Formation. Journal of Biological Chemistry, 2009, 284, 33750-33762.                                             | 3.4      | 110       |
| 58 | Platelet response heterogeneity in thrombus formation. Thrombosis and Haemostasis, 2009, 102, 1149-1156.                                                                                                                                        | 3.4      | 117       |
| 59 | Dual role of collagen in factor XII–dependent thrombus formation. Blood, 2009, 114, 881-890.                                                                                                                                                    | 1.4      | 186       |
| 60 | PKCα regulates platelet granule secretion and thrombus formation in mice. Journal of Clinical Investigation, 2009, 119, 399-407.                                                                                                                | 8.2      | 136       |
| 61 | Key Role of Platelet Procoagulant Activity in Tissue Factor-and Collagen-Dependent Thrombus<br>Formation in Arterioles and VenulesIn VivoDifferential Sensitivity to Thrombin Inhibition.<br>Microcirculation, 2008, 15, 269-282.               | 1.8      | 59        |
| 62 | Dual P2Y <sub>12</sub> receptor signaling in thrombinâ€stimulated plateletsâ€f–â€finvolvement of phosphoinositide 3â€kinaseâ€fî² but not l³â€fisoform in Ca <sup>2+</sup> â€fmobilization and procoagulant ac FEBS Journal, 2008, 275, 371-385. | :tav#ty. | 43        |
| 63 | Multiple ways to switch platelet integrins on and off. Journal of Thrombosis and Haemostasis, 2008, 6, 1253-1261.                                                                                                                               | 3.8      | 80        |
| 64 | Genetic Analysis of the Role of Protein Kinase CÎ, in Platelet Function and Thrombus Formation. PLoS<br>ONE, 2008, 3, e3277.                                                                                                                    | 2.5      | 37        |
| 65 | Dual Role of Platelet Protein Kinase C in Thrombus Formation. Journal of Biological Chemistry, 2007, 282, 7046-7055.                                                                                                                            | 3.4      | 54        |
| 66 | Activation of αllbβ3 is a sufficient but also an imperative prerequisite for activation of α2β1 on platelets.<br>Blood, 2007, 109, 595-602.                                                                                                     | 1.4      | 43        |
| 67 | Role of murine integrin α2β1 in thrombus stabilization and embolization: Contribution of thromboxane<br>A2. Thrombosis and Haemostasis, 2007, 98, 1072-1080.                                                                                    | 3.4      | 34        |
| 68 | Role of murine integrin alpha2beta1 in thrombus stabilization and embolization: contribution of thromboxane A2. Thrombosis and Haemostasis, 2007, 98, 1072-80.                                                                                  | 3.4      | 17        |
| 69 | Continuous signaling via PI3K isoforms $\hat{I}^2$ and $\hat{I}^3$ is required for platelet ADP receptor function in dynamic thrombus stabilization. Blood, 2006, 108, 3045-3052.                                                               | 1.4      | 145       |
| 70 | Fibrillar type I collagens enhance platelet-dependent thrombin generation via glycoprotein VI with direct support of α2β1 but not αIlbβ3 integrin. Thrombosis and Haemostasis, 2005, 94, 107-114.                                               | 3.4      | 25        |
| 71 | Contribution of platelet glycoprotein VI to the thrombogenic effect of collagens in fibrous atherosclerotic lesions. Atherosclerosis, 2005, 181, 19-27.                                                                                         | 0.8      | 72        |