List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11627051/publications.pdf Version: 2024-02-01

Κλζμο Ειμιτλ

#	Article	IF	CITATIONS
1	Cats learn the names of their friend cats in their daily lives. Scientific Reports, 2022, 12, 6155.	3.3	4
2	Dogs and cats prioritize human action: choosing a now-empty instead of a still-baited container. Animal Cognition, 2021, 24, 65-73.	1.8	10
3	Motion parallax via head movements modulates visuo-motor control in pigeons. Journal of Experimental Biology, 2021, 224, .	1.7	1
4	On experimental tests for studying altruism in capuchin monkeys. Behavioural Processes, 2021, 189, 104424.	1.1	1
5	Socio-spatial cognition in cats: Mentally mapping owner's location from voice. PLoS ONE, 2021, 16, e0257611.	2.5	7
6	Phylogeny and ontogeny of mental time. Neuroscience Research, 2020, 170, 13-17.	1.9	1
7	Dynamic Corridor Illusion in Pigeons: Humanlike Pictorial Cue Precedence Over Motion Parallax Cue in Size Perception. I-Perception, 2020, 11, 204166952091140.	1.4	8
8	Transitive inference in cleaner wrasses (Labroides dimidiatus). PLoS ONE, 2020, 15, e0237817.	2.5	12
9	Pigeons (Columba livia) integrate visual motion using the vector average rule: effect of viewing distance. Animal Cognition, 2020, 23, 819-825.	1.8	1
10	Investigating reactions of squirrel monkeys (Saimiri sciureus) towards unequal food distributions in a tray-pulling paradigm. Primates, 2020, 61, 717-727.	1.1	3
11	Capuchin monkeys (Sapajus apella) failed to seek information for their potential forgetting in a computerized task. Primates, 2020, 61, 623-632.	1.1	1
12	Transitive inference in cleaner wrasses (Labroides dimidiatus). , 2020, 15, e0237817.		0
13	Transitive inference in cleaner wrasses (Labroides dimidiatus). , 2020, 15, e0237817.		0
14	Transitive inference in cleaner wrasses (Labroides dimidiatus). , 2020, 15, e0237817.		0
15	Transitive inference in cleaner wrasses (Labroides dimidiatus). , 2020, 15, e0237817.		0
16	Pigeons integrate visual motion signals differently than humans. Scientific Reports, 2019, 9, 13411.	3.3	3
17	Cats match voice and face: cross-modal representation of humans in cats (Felis catus). Animal Cognition, 2019, 22, 901-906.	1.8	31
18	Pigeons (Columba livia) know when they will need hints: prospective metacognition for reference memory?. Animal Cognition, 2018, 21, 207-217.	1.8	13

#	Article	IF	CITATIONS
19	Body inversion effect in monkeys. PLoS ONE, 2018, 13, e0204353.	2.5	11
20	Affective States, Motivation, and Prosocial Behaviour in Primates. Interdisciplinary Evolution Research, 2018, , 27-45.	0.3	0
21	Predator experience changes spider mites' habitat choice even without current threat. Scientific Reports, 2018, 8, 8388.	3.3	2
22	Do capuchin monkeys (Sapajus apella) know the contents of memory traces?: A study of metamemory for compound stimuli Journal of Comparative Psychology (Washington, D C: 1983), 2018, 132, 88-96.	0.5	8
23	Observational Learning in Capuchin Monkeys: A Video Deficit Effect. Quarterly Journal of Experimental Psychology, 2017, 70, 1254-1262.	1.1	5
24	Third-party social evaluations of humans by monkeys and dogs. Neuroscience and Biobehavioral Reviews, 2017, 82, 95-109.	6.1	31
25	Use of incidentally encoded memory from a single experience in cats. Behavioural Processes, 2017, 141, 267-272.	1.1	11
26	Owners' view of their pets' emotions, intellect, and mutual relationship: Cats and dogs compared. Behavioural Processes, 2017, 141, 316-321.	1.1	41
27	Experience matters: Dogs (Canis familiaris) infer physical properties of objects from movement clues. Behavioural Processes, 2017, 136, 54-58.	1.1	2
28	Short poly-glutamine repeat in the androgen receptor in New World monkeys. Meta Gene, 2017, 14, 105-113.	0.6	2
29	Behavioural flexibility in spider mites: oviposition site shifts based on past and present stimuli from conspecifics and predators. Royal Society Open Science, 2017, 4, 170328.	2.4	7
30	Microsatellite Polymorphisms Adjacent to the Oxytocin Receptor Gene in Domestic Cats: Association with Personality?. Frontiers in Psychology, 2017, 8, 2165.	2.1	11
31	RECOLLECTION OF WHAT-WHERE-WHICH MEMORY IN DEGUS (<i>OCTODON DEGUS</i>). Psychologia, 2016, 59, 148-162.	0.3	2
32	HORSES (<i>EQUUS CABALLUS</i>) ADAPTIVELY CHANGE THE MODALITY OF THEIR BEGGING BEHAVIOR AS A FUNCTION OF HUMAN ATTENTIONAL STATES. Psychologia, 2016, 59, 100-111.	0.3	13
33	INFLUENCE OF OWNERS' PERSONALITY ON PERSONALITY IN LABRADOR RETRIEVER DOGS. Psychologia, 2016 59, 73-80.	^{5,} 0.3	4
34	There's no ball without noise: cats' prediction of an object from noise. Animal Cognition, 2016, 19, 1043-1047.	1.8	14
35	Evaluation of third-party reciprocity by squirrel monkeys (Saimiri sciureus) and the question of mechanisms. Animal Cognition, 2016, 19, 813-818.	1.8	7
36	The oxytocin receptor gene (OXTR) polymorphism in cats (Felis catus) is associated with "Roughness― assessed by owners. Journal of Veterinary Behavior: Clinical Applications and Research, 2016, 11, 109-112.	1.2	28

#	Article	IF	CITATIONS
37	What do dogs see in human behavior?. Japanese Journal of Animal Psychology, 2016, 66, 11-21.	0.3	0
38	Do dogs follow behavioral cues from an unreliable human?. Animal Cognition, 2015, 18, 475-483.	1.8	45
39	Dogs avoid people who behave negatively to their owner: third-party affective evaluation. Animal Behaviour, 2015, 106, 123-127.	1.9	44
40	Do cats (Felis catus) predict the presence of an invisible object from sound?. Journal of Veterinary Behavior: Clinical Applications and Research, 2015, 10, 407-412.	1.2	2
41	Visual categorization of surface qualities of materials by capuchin monkeys and humans. Vision Research, 2015, 115, 71-82.	1.4	11
42	Differential motion processing between species facing Ternus–Pikler display: Non-retinotopic humans versus retinotopic pigeons. Vision Research, 2014, 103, 32-40.	1.4	2
43	A reversed Ebbinghaus–Titchener illusion in bantams (Gallus gallus domesticus). Animal Cognition, 2014, 17, 471-481.	1.8	34
44	Bantams (Gallus gallus domesticus) also perceive a reversed Zöllner illusion. Animal Cognition, 2013, 16, 109-115.	1.8	24
45	Capuchin monkeys judge third-party reciprocity. Cognition, 2013, 127, 140-146.	2.2	40
46	Third-party social evaluation of humans by monkeys. Nature Communications, 2013, 4, 1561.	12.8	53
47	Do pigeons (Columba livia) seek information when they have insufficient knowledge?. Animal Cognition, 2013, 16, 211-221.	1.8	22
48	Breed Differences in Dopamine Receptor D4 Gene (<i>DRD4</i>) in Horses. Journal of Equine Science, 2013, 24, 31-36.	0.8	12
49	Cross-modal concept of human gender in dogs (Canis familiaris). Japanese Journal of Animal Psychology, 2013, 63, 123-130.	0.3	3
50	Acquisition of a Same-Different Discrimination Task by Pigeons (<i>Columba Livia</i>). Psychological Reports, 2012, 110, 251-262.	1.7	0
51	Further Tests of Pigeons' (Columba Livia) Planning Behavior Using a Computerized Plus-Shaped Maze Task. Perceptual and Motor Skills, 2012, 115, 27-42.	1.3	3
52	Incidental memory in dogs (Canis familiaris): adaptive behavioral solution at an unexpected memory test. Animal Cognition, 2012, 15, 1055-1063.	1.8	33
53	Capuchin monkeys (Cebus apella) use conspecifics' emotional expressions to evaluate emotional valence of objects. Animal Cognition, 2012, 15, 341-347.	1.8	24
54	Learning and generalization of tool use by tufted capuchin monkeys (Cebus apella) in tasks involving three factors: Reward, tool, and hindrance Journal of Experimental Psychology, 2011, 37, 10-19.	1.7	12

#	Article	IF	CITATIONS
55	Chimpanzees (<i>Pan troglodytes</i>) show more understanding of human attentional states when they request food in the experimenter's hand than on the table. Interaction Studies, 2011, 12, 418-429.	0.6	5
56	Reverse-reward learning in squirrel monkeys (Saimiri sciureus): Retesting after 5 years, and assessment on qualitative transfer Journal of Comparative Psychology (Washington, D C: 1983), 2011, 125, 84-90.	0.5	6
57	Flexible route selection by pigeons (Columba livia) on a computerized multi-goal navigation task with and without an "obstacleâ€. Journal of Comparative Psychology (Washington, D C: 1983), 2011, 125, 431-435.	O.5	8
58	Do bantams (Gallus gallus domesticus) amodally complete partly occluded lines? An analysis of line classification performance Journal of Comparative Psychology (Washington, D C: 1983), 2011, 125, 411-419.	0.5	8
59	Pigeons perceive a reversed Zöllner illusion. Cognition, 2011, 119, 137-141.	2.2	33
60	How do keas (Nestor notabilis) solve artificial-fruit problems with multiple locks?. Animal Cognition, 2011, 14, 45-58.	1.8	33
61	Do birds (pigeons and bantams) know how confident they are of their perceptual decisions?. Animal Cognition, 2011, 14, 83-93.	1.8	32
62	I acknowledge your help: capuchin monkeys' sensitivity to others' labor. Animal Cognition, 2011, 14, 715-725.	1.8	29
63	Capuchin monkeys (Cebus apella) modify their own behaviors according to a conspecific's emotional expressions. Primates, 2011, 52, 279-286.	1.1	22
64	Planning abilities in non-human animals: new findings in primates and birds. Japanese Journal of Animal Psychology, 2011, 61, 69-82.	0.3	4
65	Delay of gratification in capuchin monkeys (cebus apella) and squirrel monkeys (saimiri sciureus) Journal of Comparative Psychology (Washington, D C: 1983), 2010, 124, 205-210.	0.5	52
66	Do bantams (Gallus gallus domesticus) experience amodal completion? An analysis of visual search performance Journal of Comparative Psychology (Washington, D C: 1983), 2010, 124, 331-335.	0.5	10
67	Route selection by pigeons (Columba livia) in "traveling salesperson―navigation tasks presented on an LCD screen Journal of Comparative Psychology (Washington, D C: 1983), 2010, 124, 433-446.	0.5	22
68	Tufted capuchin monkeys (Cebus apella) show understanding of human attentional states when requesting food held by a human. Animal Cognition, 2010, 13, 87-92.	1.8	58
69	Capuchin monkeys (Cebus apella) are sensitive to others' reward: an experimental analysis of food-choice for conspecifics. Animal Cognition, 2010, 13, 249-261.	1.8	98
70	Flexibility in the use of requesting gestures in squirrel monkeys (<i>Saimiri sciureus</i>). American Journal of Primatology, 2010, 72, 707-714.	1.7	22
71	Further Analysis of Perception of Reversed Müller-Lyer Figures for Pigeons (<i>Columba Livia</i>). Perceptual and Motor Skills, 2009, 108, 239-250.	1.3	14
72	A comparative psychophysical approach to visual perception in primates. Primates, 2009, 50, 121-130.	1.1	25

#	Article	IF	CITATIONS
73	Capuchin monkeys (Cebus apella) respond to video images of themselves. Animal Cognition, 2009, 12, 55-62.	1.8	25
74	Metamemory in tufted capuchin monkeys (Cebus apella). Animal Cognition, 2009, 12, 575-585.	1.8	100
75	Plasticity of ability to form crossâ€modal representations in infant Japanese macaques. Developmental Science, 2009, 12, 446-452.	2.4	17
76	Nine―to 11â€monthâ€old infants' reasoning about causality in anomalous human movements ¹ . Japanese Psychological Research, 2009, 51, 246-257.	1.1	2
77	Colour versus quantity as cues in reverse-reward-competent squirrel monkeys (<i>Saimiri) Tj ETQq1 1 0.784314 n</i>	gBT /Ovei	logk 10 Tf 50
78	Planning in human children (Homo sapiens) assessed by maze problems on the touch screen Journal of Comparative Psychology (Washington, D C: 1983), 2009, 123, 69-78.	0.5	17
79	Further analysis of perception of the standard Müller-Lyer figures in pigeons (Columba livia) and humans (Homo sapiens): Effects of length of brackets Journal of Comparative Psychology (Washington, D C: 1983), 2009, 123, 287-294.	0.5	13
80	ãf•ã,µã,ªãƒžã,ã,¶ãƒ«ã®çŸ¥æ€§ã•æ"Ÿæƒ Primate Research, 2009, 24, 241-263.	0.0	1
81	Social intelligence in tufted capuchin monkeys. Japanese Journal of Animal Psychology, 2009, 59, 117-130.	0.3	0
82	Pigeons (Columba livia) plan future moves on computerized maze tasks. Animal Cognition, 2008, 11, 505-516.	1.8	28
83	Learning from others' mistakes in capuchin monkeys (Cebus apella). Animal Cognition, 2008, 11, 599-609.	1.8	17
84	Quality before quantity: Rapid learning of reverse-reward contingency by capuchin monkeys (Cebus) Tj ETQq0 0 (0 rgBT /0v	verlock 10 Tf
85	Pigeons perceive the Ebbinghaus-Titchener circles as an assimilation illusion Journal of Experimental Psychology, 2008, 34, 375-387.	1.7	57
86	Inference Based on Transitive Relation in Tree Shrews (Tupaia Belangeri) and Rats (Rattus Norvegicus) on a Spatial Discrimination Task. Psychological Record, 2008, 58, 215-227.	0.9	9
87	What You See is Different from What I See: Species Differences in Visual Perception. , 2008, , 29-54.		1
88	Species Recognition by Macaques Measured by Sensory Reinforcement. , 2008, , 368-382.		1
89	Social Intelligence in Capuchin Monkeys (Cebus apella). , 2008, , 3-20.		2
90	Cross-modal representation of human caretakers in squirrel monkeys. Behavioural Processes, 2007, 74, 27-32.	1.1	35

#	Article	IF	CITATIONS
91	I know you are not looking at me: capuchin monkeys' (Cebus apella) sensitivity to human attentional states. Animal Cognition, 2007, 10, 141-148.	1.8	63
92	Gaze alternation during "pointing―by squirrel monkeys (Saimiri sciureus)?. Animal Cognition, 2007, 10, 267-271.	1.8	25
93	Performance of pigeons (Columba livia) on maze problems presented on the LCD screen: In search for preplanning ability in an avian species Journal of Comparative Psychology (Washington, D C: 1983), 2006, 120, 358-366.	0.5	19
94	Perception of the standard and the reversed Müller-Lyer figures in pigeons (Columba livia) and humans (Homo sapiens) Journal of Comparative Psychology (Washington, D C: 1983), 2006, 120, 252-261.	0.5	54
95	Transfer from "edible" categorization training to feeding behavior in pigeons (Columba livia)1. Japanese Psychological Research, 2006, 48, 27-33.	1.1	Ο
96	Redundant food searches by capuchin monkeys (Cebus apella): a failure of metacognition?. Animal Cognition, 2006, 9, 110-117.	1.8	87
97	Dogs recall their owner's face upon hearing the owner's voice. Animal Cognition, 2006, 10, 17-21.	1.8	153
98	Japanese macaques form a cross-modal representation of their own species in their first year of life. Primates, 2006, 47, 350-354.	1.1	30
99	What perceptual rules do Capuchin Monkeys (Cebus Apella) follow in completing partly occluded figures?. Journal of Experimental Psychology, 2005, 31, 387-398.	1.7	35
100	Cooperative problem solving by tufted capuchin monkeys (Cebus apella): Spontaneous division of labor, communication, and reciprocal altruism Journal of Comparative Psychology (Washington, D) Tj ETQq0 0	0 r gB aT /O'	verlæck 10 Tf 5
101	Attention to combined attention in New World monkeys (Cebus apella, Saimiri sciureus) Journal of Comparative Psychology (Washington, D C: 1983), 2005, 119, 461-464.	0.5	14
102	Are monkeys aesthetists? Rensch (1957) revisited Journal of Experimental Psychology, 2005, 31, 71-78.	1.7	27
103	Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates. American Journal of Primatology, 2005, 67, 425-436.	1.7	78
104	Pigeons do not perceptually complete partly occluded photos of food: an ecological approach to the "pigeon problem― Behavioural Processes, 2005, 69, 67-78.	1.1	30
105	Better living by not completing: a wonderful peculiarity of pigeon vision?. Behavioural Processes, 2005, 69, 59-66.	1.1	36
106	How do nonhuman animals perceptually integrate figural fragments?1. Japanese Psychological Research, 2004, 46, 154-169.	1.1	19
107	Perceptual organization of motions in pigeons (Columba livia)1. Japanese Psychological Research, 2004, 46, 170-181.	1.1	5
108	Do squirrel monkeys (Saimiri sciureus) and capuchin monkeys (Cebus apella) predict that looking leads to touching?. Animal Cognition, 2004, 7, 185-92.	1.8	15

KAZUO FUJITA

71

#	Article	IF	CITATIONS
109	Reactions of capuchin monkeys (Cebus apella) to multiple mirrors. Behavioural Processes, 2004, 66, 1-6.	1.1	24
110	Squirrel Monkeys (Saimiri sciureus) Choose Smaller Food Arrays: Long-Term Retention, Choice With Nonpreferred Food, and Transposition Journal of Comparative Psychology (Washington, D C: 1983), 2004, 118, 58-64.	0.5	39
111	A Capuchin monkey (Cebus apella) recognizes when people do and do not know the location of food. Animal Cognition, 2003, 6, 283-291.	1.8	29
112	10-month-old infants' inference of invisible agent: Distinction in causality between object motion and human action1. Japanese Psychological Research, 2003, 45, 15-24.	1.1	23
113	How do tufted capuchin monkeys (Cebus apella) understand causality involved in tool use?. Journal of Experimental Psychology, 2003, 29, 233-242.	1.7	75
114	Transitive responding with visual stimuli in rats (Rattus norvegicus). Japanese Journal of Animal Psychology, 2003, 53, 17-22.	0.3	4
115	How do 8-month-old infants recognize causality in object motion and that in human action?. Japanese Psychological Research, 2002, 44, 66-78.	1.1	23
116	Understanding of the relationship between seeing and knowing by tufted capuchin monkeys (Cebus) Tj ETQq0 C	0 0 1 gBT /O	verlock 10 Tf
117	Do tufted capuchin monkeys (Cebus apella) spontaneously deceive opponents? A preliminary analysis of an experimental food-competition contest between monkeys. Animal Cognition, 2002, 5, 19-25.	1.8	38
118	Training squirrel monkeys (Saimiri sciureus) to deceive: Acquisition and analysis of behavior toward cooperative and competitive trainers Journal of Comparative Psychology (Washington, D C: 1983), 2001, 115, 282-293.	0.5	23
119	Do pigeons (Columba livia) perceive object unity?. Animal Cognition, 2001, 4, 153-161.	1.8	34
120	Perceptual completion in rhesus monkeys (Macaca mulatta) and pigeons (Columba livia). Perception & Psychophysics, 2001, 63, 115-125.	2.3	61
121	Can squirrel monkeys (Saimiri sciureus) learn self-control? A study using food array selection tests and reverse-reward contingency Journal of Experimental Psychology, 2000, 26, 87-97.	1.7	45
122	Influence of dominance on food transmission in rats. Japanese Journal of Animal Psychology, 2000, 50, 119-123.	0.3	4
123	Spontaneous Tool Use by a Tonkean Macaque <i>(Macaca tonkeana)</i> . Folia Primatologica, 1998, 69, 318-324.	0.7	16
124	Influence of social relationships on food transmission in rats. Japanese Journal of Animal Psychology, 1998, 48, 183-190.	0.3	4
125	Perception of Object Unity in a Chimpanzee (Pan troglodytes). Japanese Psychological Research, 1997, 39, 191-199.	1.1	60

126Perception of the Ponzo illusion by rhesus monkeys, chimpanzees, and humans: Similarity and
difference in the three primate species. Perception & Psychophysics, 1997, 59, 284-292.2.3

KAZUO FUJITA

#	Article	IF	Citations
127	Discrimination of macaques by macaques: the case of Sulawesi species. Primates, 1997, 38, 233-245.	1.1	24
128	Linear perspective and the Ponzo illusion: a comparison between rhesus monkeys and humans ¹ . Japanese Psychological Research, 1996, 38, 136-145.	1.1	34
129	POINTING AT SMALLER FOOD AMOUNTS IN AN ANALOGUE OF BOYSEN AND BERNTSON'S (1995) PROCEDURE. Journal of the Experimental Analysis of Behavior, 1996, 66, 143-147.	1.1	70
130	Visual preference for closely related species by Sulawesi macaques. American Journal of Primatology, 1995, 37, 253-261.	1.7	31
131	Effects of the inclination of context lines on perception of the Ponzo illusion by pigeons. Learning and Behavior, 1993, 21, 29-34.	3.4	32
132	Role of some physical characteristics in species recognition by pigtail monkeys. Primates, 1993, 34, 133-140.	1.1	29
133	Development of visual preference for closely related species by infant and juvenile macaques with restricted social experience. Primates, 1993, 34, 141-150.	1.1	45
134	Emergence of Symmetry in a Visual Conditional Discrimination by Chimpanzees (<i>Pan) Tj ETQq0 0 0 rgBT /Over</i>	lock 10 Tf	[:] 50 462 Td (
135	Pigeons see the Ponzo illusion. Learning and Behavior, 1991, 19, 283-293.	3.4	62
136	Delayed figure reconstruction by a chimpanzee (Pan troglodytes) and humans (Homo sapiens) Journal of Comparative Psychology (Washington, D C: 1983), 1990, 104, 345-351.	0.5	79
137	Species preference by infant macaques with controlled social experience. International Journal of Primatology, 1990, 11, 553-573.	1.9	44
138	Comparison of the Representational Abilities of Chimpanzees and Humans. Primate Research, 1989, 5, 58-74.	0.0	6
139	Species recognition by five macaque monkeys. Primates, 1987, 28, 353-366.	1.1	99
140	A new procedure to study the perceptual world of animals with sensory reinforcement: Recognition of humans by a chimpanzee. Primates, 1986, 27, 283-291.	1.1	50
141	EFFECTS OF RATIO REINFORCEMENT SCHEDULES ON DISCRIMINATION PERFORMANCE BY JAPANESE MONKEYS. Journal of the Experimental Analysis of Behavior, 1985, 43, 225-234.	1.1	8
142	FORMATION OF THE SAMENESS-DIFFERENCE CONCEPT BY JAPANESE MONKEYS FROM A SMALL NUMBER OF COLOR STIMULI. Journal of the Experimental Analysis of Behavior, 1983, 40, 289-300.	1.1	15

143	Acquisition and transfer of a higher-order conditional discrimination performance in the Japanese monkey. Japanese Psychological Research, 1983, 25, 1-8.	1.1	15	
144	An analysis of stimulus control in two-color matching-to-sample behaviors of Japanese monkeys	1.1	40	

An analysis of stimulus control in two-color matching-to-sample behaviors of Japanese monkeys (<l>Macaca fuscata fuscata</l>). Japanese Psychological Research, 1982, 24, 124-135. 144 1.1

#	Article	IF	CITATIONS
145	āf‹āf›āf³ā,¶āf«å¹¹¼åā«āŠāʿā,‹æ"Ÿe¦šæ€§å¹¼·åŒ–ã®e¡Œå‹•å^†æž•æ™,é–"éå^†ã®e¦³ç,¹ã•ã,‰. Shinrigaku	Kenlayzu, I	1981551,351-3