Kazuo Fujita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11627051/publications.pdf

Version: 2024-02-01

109321 182427 3,632 145 35 51 citations h-index g-index papers 145 145 145 1446 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dogs recall their owner's face upon hearing the owner's voice. Animal Cognition, 2006, 10, 17-21.	1.8	153
2	Metamemory in tufted capuchin monkeys (Cebus apella). Animal Cognition, 2009, 12, 575-585.	1.8	100
3	Species recognition by five macaque monkeys. Primates, 1987, 28, 353-366.	1.1	99
4	Capuchin monkeys (Cebus apella) are sensitive to others' reward: an experimental analysis of food-choice for conspecifics. Animal Cognition, 2010, 13, 249-261.	1.8	98
5	Redundant food searches by capuchin monkeys (Cebus apella): a failure of metacognition?. Animal Cognition, 2006, 9, 110-117.	1.8	87
6	Delayed figure reconstruction by a chimpanzee (Pan troglodytes) and humans (Homo sapiens) Journal of Comparative Psychology (Washington, D C: 1983), 1990, 104, 345-351.	0.5	79
7	Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates. American Journal of Primatology, 2005, 67, 425-436.	1.7	78
8	How do tufted capuchin monkeys (Cebus apella) understand causality involved in tool use?. Journal of Experimental Psychology, 2003, 29, 233-242.	1.7	75
9	Emergence of Symmetry in a Visual Conditional Discrimination by Chimpanzees (<i>Pan) Tj ETQq1 1 0.784314 rgE</i>	BŢ <i>.[</i> Overlo	ck 10 Tf 50
10	Perception of the Ponzo illusion by rhesus monkeys, chimpanzees, and humans: Similarity and difference in the three primate species. Perception & Psychophysics, 1997, 59, 284-292.	2.3	71
11	Cooperative problem solving by tufted capuchin monkeys (Cebus apella): Spontaneous division of labor, communication, and reciprocal altruism Journal of Comparative Psychology (Washington, D) Tj ETQq1 1 0.	78.\$ 314 rg	g B I /Overloc
12	POINTING AT SMALLER FOOD AMOUNTS IN AN ANALOGUE OF BOYSEN AND BERNTSON'S (1995) PROCEDURE. Journal of the Experimental Analysis of Behavior, 1996, 66, 143-147.	1.1	70
13	I know you are not looking at me: capuchin monkeys' (Cebus apella) sensitivity to human attentional states. Animal Cognition, 2007, 10, 141-148.	1.8	63
14	Pigeons see the Ponzo illusion. Learning and Behavior, 1991, 19, 283-293.	3.4	62
15	Perceptual completion in rhesus monkeys (Macaca mulatta) and pigeons (Columba livia). Perception & Psychophysics, 2001, 63, 115-125.	2.3	61
16	Perception of Object Unity in a Chimpanzee (Pan troglodytes). Japanese Psychological Research, 1997, 39, 191-199.	1.1	60
17	Tufted capuchin monkeys (Cebus apella) show understanding of human attentional states when requesting food held by a human. Animal Cognition, 2010, 13, 87-92.	1.8	58
18	Pigeons perceive the Ebbinghaus-Titchener circles as an assimilation illusion Journal of Experimental Psychology, 2008, 34, 375-387.	1.7	57

#	Article	IF	Citations
19	Perception of the standard and the reversed Mýller-Lyer figures in pigeons (Columba livia) and humans (Homo sapiens) Journal of Comparative Psychology (Washington, D C: 1983), 2006, 120, 252-261.	0.5	54
20	Third-party social evaluation of humans by monkeys. Nature Communications, 2013, 4, 1561.	12.8	53
21	Delay of gratification in capuchin monkeys (cebus apella) and squirrel monkeys (saimiri sciureus) Journal of Comparative Psychology (Washington, D C: 1983), 2010, 124, 205-210.	0.5	52
22	A new procedure to study the perceptual world of animals with sensory reinforcement: Recognition of humans by a chimpanzee. Primates, 1986, 27, 283-291.	1.1	50
23	Development of visual preference for closely related species by infant and juvenile macaques with restricted social experience. Primates, 1993, 34, 141-150.	1.1	45
24	Can squirrel monkeys (Saimiri sciureus) learn self-control? A study using food array selection tests and reverse-reward contingency Journal of Experimental Psychology, 2000, 26, 87-97.	1.7	45
25	Do dogs follow behavioral cues from an unreliable human?. Animal Cognition, 2015, 18, 475-483.	1.8	45
26	Species preference by infant macaques with controlled social experience. International Journal of Primatology, 1990, 11, 553-573.	1.9	44
27	Dogs avoid people who behave negatively to their owner: third-party affective evaluation. Animal Behaviour, 2015, 106, 123-127.	1.9	44
28	Owners' view of their pets' emotions, intellect, and mutual relationship: Cats and dogs compared. Behavioural Processes, 2017, 141, 316-321.	1.1	41
29	An analysis of stimulus control in two-color matching-to-sample behaviors of Japanese monkeys (<l>Macaca fuscata fuscata</l>). Japanese Psychological Research, 1982, 24, 124-135.	1.1	40
30	Capuchin monkeys judge third-party reciprocity. Cognition, 2013, 127, 140-146.	2.2	40
31	Squirrel Monkeys (Saimiri sciureus) Choose Smaller Food Arrays: Long-Term Retention, Choice With Nonpreferred Food, and Transposition Journal of Comparative Psychology (Washington, D C: 1983), 2004, 118, 58-64.	0.5	39
32	Do tufted capuchin monkeys (Cebus apella) spontaneously deceive opponents? A preliminary analysis of an experimental food-competition contest between monkeys. Animal Cognition, 2002, 5, 19-25.	1.8	38
33	Understanding of the relationship between seeing and knowing by tufted capuchin monkeys (Cebus) Tj ETQq1	1 0.78431 <i>4</i>	1 rgBT /Overl
34	Better living by not completing: a wonderful peculiarity of pigeon vision?. Behavioural Processes, 2005, 69, 59-66.	1.1	36
35	Quality before quantity: Rapid learning of reverse-reward contingency by capuchin monkeys (Cebus) Tj ETQq $1\ 1$	0.784314	rgBT /Overlo
36	What perceptual rules do Capuchin Monkeys (Cebus Apella) follow in completing partly occluded figures?. Journal of Experimental Psychology, 2005, 31, 387-398.	1.7	35

#	Article	IF	CITATIONS
37	Cross-modal representation of human caretakers in squirrel monkeys. Behavioural Processes, 2007, 74, 27-32.	1.1	35
38	Linear perspective and the Ponzo illusion: a comparison between rhesus monkeys and humans ¹ . Japanese Psychological Research, 1996, 38, 136-145.	1.1	34
39	Do pigeons (Columba livia) perceive object unity?. Animal Cognition, 2001, 4, 153-161.	1.8	34
40	A reversed Ebbinghaus–Titchener illusion in bantams (Gallus gallus domesticus). Animal Cognition, 2014, 17, 471-481.	1.8	34
41	Pigeons perceive a reversed Zöllner illusion. Cognition, 2011, 119, 137-141.	2.2	33
42	How do keas (Nestor notabilis) solve artificial-fruit problems with multiple locks?. Animal Cognition, 2011, 14, 45-58.	1.8	33
43	Incidental memory in dogs (Canis familiaris): adaptive behavioral solution at an unexpected memory test. Animal Cognition, 2012, 15, 1055-1063.	1.8	33
44	Effects of the inclination of context lines on perception of the Ponzo illusion by pigeons. Learning and Behavior, 1993, 21, 29-34.	3.4	32
45	Do birds (pigeons and bantams) know how confident they are of their perceptual decisions?. Animal Cognition, 2011, 14, 83-93.	1.8	32
46	Visual preference for closely related species by Sulawesi macaques. American Journal of Primatology, 1995, 37, 253-261.	1.7	31
47	Third-party social evaluations of humans by monkeys and dogs. Neuroscience and Biobehavioral Reviews, 2017, 82, 95-109.	6.1	31
48	Cats match voice and face: cross-modal representation of humans in cats (Felis catus). Animal Cognition, 2019, 22, 901-906.	1.8	31
49	Pigeons do not perceptually complete partly occluded photos of food: an ecological approach to the "pigeon problem― Behavioural Processes, 2005, 69, 67-78.	1.1	30
50	Japanese macaques form a cross-modal representation of their own species in their first year of life. Primates, 2006, 47, 350-354.	1.1	30
51	Role of some physical characteristics in species recognition by pigtail monkeys. Primates, 1993, 34, 133-140.	1.1	29
52	A Capuchin monkey (Cebus apella) recognizes when people do and do not know the location of food. Animal Cognition, 2003, 6, 283-291.	1.8	29
53	I acknowledge your help: capuchin monkeys' sensitivity to others' labor. Animal Cognition, 2011, 14, 715-725.	1.8	29
54	Pigeons (Columba livia) plan future moves on computerized maze tasks. Animal Cognition, 2008, 11, 505-516.	1.8	28

#	Article	IF	Citations
55	The oxytocin receptor gene (OXTR) polymorphism in cats (Felis catus) is associated with "Roughness― assessed by owners. Journal of Veterinary Behavior: Clinical Applications and Research, 2016, 11, 109-112.	1.2	28
56	Are monkeys aesthetists? Rensch (1957) revisited Journal of Experimental Psychology, 2005, 31, 71-78.	1.7	27
57	Gaze alternation during "pointing―by squirrel monkeys (Saimiri sciureus)?. Animal Cognition, 2007, 10, 267-271.	1.8	25
58	A comparative psychophysical approach to visual perception in primates. Primates, 2009, 50, 121-130.	1.1	25
59	Capuchin monkeys (Cebus apella) respond to video images of themselves. Animal Cognition, 2009, 12, 55-62.	1.8	25
60	Discrimination of macaques by macaques: the case of Sulawesi species. Primates, 1997, 38, 233-245.	1.1	24
61	Reactions of capuchin monkeys (Cebus apella) to multiple mirrors. Behavioural Processes, 2004, 66, 1-6.	1.1	24
62	Capuchin monkeys (Cebus apella) use conspecifics' emotional expressions to evaluate emotional valence of objects. Animal Cognition, 2012, 15, 341-347.	1.8	24
63	Bantams (Gallus gallus domesticus) also perceive a reversed Zöllner illusion. Animal Cognition, 2013, 16, 109-115.	1.8	24
64	Training squirrel monkeys (Saimiri sciureus) to deceive: Acquisition and analysis of behavior toward cooperative and competitive trainers Journal of Comparative Psychology (Washington, D C: 1983), 2001, 115, 282-293.	0.5	23
65	How do 8-month-old infants recognize causality in object motion and that in human action?. Japanese Psychological Research, 2002, 44, 66-78.	1.1	23
66	10-month-old infants' inference of invisible agent: Distinction in causality between object motion and human action1. Japanese Psychological Research, 2003, 45, 15-24.	1.1	23
67	Route selection by pigeons (Columba livia) in "traveling salesperson―navigation tasks presented on an LCD screen Journal of Comparative Psychology (Washington, D C: 1983), 2010, 124, 433-446.	0.5	22
68	Flexibility in the use of requesting gestures in squirrel monkeys (<i>Saimiri sciureus</i>). American Journal of Primatology, 2010, 72, 707-714.	1.7	22
69	Capuchin monkeys (Cebus apella) modify their own behaviors according to a conspecific's emotional expressions. Primates, 2011, 52, 279-286.	1.1	22
70	Do pigeons (Columba livia) seek information when they have insufficient knowledge?. Animal Cognition, 2013, 16, 211-221.	1.8	22
71	How do nonhuman animals perceptually integrate figural fragments?1. Japanese Psychological Research, 2004, 46, 154-169.	1.1	19
72	Performance of pigeons (Columba livia) on maze problems presented on the LCD screen: In search for preplanning ability in an avian species Journal of Comparative Psychology (Washington, D C: 1983), 2006, 120, 358-366.	0.5	19

#	Article	IF	Citations
73	Learning from others' mistakes in capuchin monkeys (Cebus apella). Animal Cognition, 2008, 11, 599-609.	1.8	17
74	Plasticity of ability to form crossâ€modal representations in infant Japanese macaques. Developmental Science, 2009, 12, 446-452.	2.4	17
75	Planning in human children (Homo sapiens) assessed by maze problems on the touch screen Journal of Comparative Psychology (Washington, D C: 1983), 2009, 123, 69-78.	0.5	17
76	Spontaneous Tool Use by a Tonkean Macaque <i>(Macaca tonkeana)</i>). Folia Primatologica, 1998, 69, 318-324.	0.7	16
77	FORMATION OF THE SAMENESS-DIFFERENCE CONCEPT BY JAPANESE MONKEYS FROM A SMALL NUMBER OF COLOR STIMULI. Journal of the Experimental Analysis of Behavior, 1983, 40, 289-300.	1.1	15
78	Acquisition and transfer of a higher-order conditional discrimination performance in the Japanese monkey. Japanese Psychological Research, 1983, 25, 1-8.	1.1	15
79	Do squirrel monkeys (Saimiri sciureus) and capuchin monkeys (Cebus apella) predict that looking leads to touching?. Animal Cognition, 2004, 7, 185-92.	1.8	15
80	Attention to combined attention in New World monkeys (Cebus apella, Saimiri sciureus) Journal of Comparative Psychology (Washington, D C: 1983), 2005, 119, 461-464.	0.5	14
81	Further Analysis of Perception of Reversed Müller-Lyer Figures for Pigeons (<i>Columba Livia</i>). Perceptual and Motor Skills, 2009, 108, 239-250.	1.3	14
82	There's no ball without noise: cats' prediction of an object from noise. Animal Cognition, 2016, 19, 1043-1047.	1.8	14
83	Further analysis of perception of the standard Mýller-Lyer figures in pigeons (Columba livia) and humans (Homo sapiens): Effects of length of brackets Journal of Comparative Psychology (Washington, D C: 1983), 2009, 123, 287-294.	0.5	13
84	HORSES (<i>EQUUS CABALLUS</i>) ADAPTIVELY CHANGE THE MODALITY OF THEIR BEGGING BEHAVIOR AS A FUNCTION OF HUMAN ATTENTIONAL STATES. Psychologia, 2016, 59, 100-111.	0.3	13
85	Pigeons (Columba livia) know when they will need hints: prospective metacognition for reference memory?. Animal Cognition, 2018, 21, 207-217.	1.8	13
86	Learning and generalization of tool use by tufted capuchin monkeys (Cebus apella) in tasks involving three factors: Reward, tool, and hindrance Journal of Experimental Psychology, 2011, 37, 10-19.	1.7	12
87	Breed Differences in Dopamine Receptor D4 Gene (<i>DRD4</i>) in Horses. Journal of Equine Science, 2013, 24, 31-36.	0.8	12
88	Transitive inference in cleaner wrasses (Labroides dimidiatus). PLoS ONE, 2020, 15, e0237817.	2.5	12
89	Visual categorization of surface qualities of materials by capuchin monkeys and humans. Vision Research, 2015, 115, 71-82.	1.4	11
90	Use of incidentally encoded memory from a single experience in cats. Behavioural Processes, 2017, 141, 267-272.	1.1	11

#	Article	IF	CITATIONS
91	Microsatellite Polymorphisms Adjacent to the Oxytocin Receptor Gene in Domestic Cats: Association with Personality?. Frontiers in Psychology, 2017, 8, 2165.	2.1	11
92	Body inversion effect in monkeys. PLoS ONE, 2018, 13, e0204353.	2.5	11
93	Do bantams (Gallus gallus domesticus) experience amodal completion? An analysis of visual search performance Journal of Comparative Psychology (Washington, D C: 1983), 2010, 124, 331-335.	0.5	10
94	Dogs and cats prioritize human action: choosing a now-empty instead of a still-baited container. Animal Cognition, 2021, 24, 65-73.	1.8	10
95	Inference Based on Transitive Relation in Tree Shrews (Tupaia Belangeri) and Rats (Rattus Norvegicus) on a Spatial Discrimination Task. Psychological Record, 2008, 58, 215-227.	0.9	9
96	EFFECTS OF RATIO REINFORCEMENT SCHEDULES ON DISCRIMINATION PERFORMANCE BY JAPANESE MONKEYS. Journal of the Experimental Analysis of Behavior, 1985, 43, 225-234.	1.1	8
97	Flexible route selection by pigeons (Columba livia) on a computerized multi-goal navigation task with and without an "obstacleâ€. Journal of Comparative Psychology (Washington, D C: 1983), 2011, 125, 431-435.	0.5	8
98	Do bantams (Gallus gallus domesticus) amodally complete partly occluded lines? An analysis of line classification performance Journal of Comparative Psychology (Washington, D C: 1983), 2011, 125, 411-419.	0.5	8
99	Dynamic Corridor Illusion in Pigeons: Humanlike Pictorial Cue Precedence Over Motion Parallax Cue in Size Perception. I-Perception, 2020, 11, 204166952091140.	1.4	8
100	Do capuchin monkeys (Sapajus apella) know the contents of memory traces?: A study of metamemory for compound stimuli Journal of Comparative Psychology (Washington, D C: 1983), 2018, 132, 88-96.	0.5	8
101	Evaluation of third-party reciprocity by squirrel monkeys (Saimiri sciureus) and the question of mechanisms. Animal Cognition, 2016, 19, 813-818.	1.8	7
102	Behavioural flexibility in spider mites: oviposition site shifts based on past and present stimuli from conspecifics and predators. Royal Society Open Science, 2017, 4, 170328.	2.4	7
103	Socio-spatial cognition in cats: Mentally mapping owner's location from voice. PLoS ONE, 2021, 16, e0257611.	2.5	7
104	Reverse-reward learning in squirrel monkeys (Saimiri sciureus): Retesting after 5 years, and assessment on qualitative transfer Journal of Comparative Psychology (Washington, D C: 1983), 2011, 125, 84-90.	0.5	6
105	Comparison of the Representational Abilities of Chimpanzees and Humans. Primate Research, 1989, 5, 58-74.	0.0	6
106	Perceptual organization of motions in pigeons (Columba livia)1. Japanese Psychological Research, 2004, 46, 170-181.	1.1	5
107	Chimpanzees (<i>Pan troglodytes</i>) show more understanding of human attentional states when they request food in the experimenter's hand than on the table. Interaction Studies, 2011, 12, 418-429.	0.6	5
108	Observational Learning in Capuchin Monkeys: A Video Deficit Effect. Quarterly Journal of Experimental Psychology, 2017, 70, 1254-1262.	1.1	5

#	Article	IF	Citations
109	ãf ‹ãf ›ãf ³ã,¶ãf «å¹ ¼åã «ãŠã'ã, ‹æ"Ÿè ¦ šæ€§å ¼ ·åŒ−ã®è¦Œå ·•分枕æ™,é−"é分ã®è ³ç,1ã•ã,‰. Shinrigaku Ko	еп ау ги, 19	81551, 351-
110	INFLUENCE OF OWNERS' PERSONALITY ON PERSONALITY IN LABRADOR RETRIEVER DOGS. Psychologia, 201 59, 73-80.	6,0.3	4
111	Influence of social relationships on food transmission in rats. Japanese Journal of Animal Psychology, 1998, 48, 183-190.	0.3	4
112	Influence of dominance on food transmission in rats. Japanese Journal of Animal Psychology, 2000, 50, 119-123.	0.3	4
113	Transitive responding with visual stimuli in rats (Rattus norvegicus). Japanese Journal of Animal Psychology, 2003, 53, 17-22.	0.3	4
114	Planning abilities in non-human animals: new findings in primates and birds. Japanese Journal of Animal Psychology, 2011, 61, 69-82.	0.3	4
115	Cats learn the names of their friend cats in their daily lives. Scientific Reports, 2022, 12, 6155.	3.3	4
116	Further Tests of Pigeons' (Columba Livia) Planning Behavior Using a Computerized Plus-Shaped Maze Task. Perceptual and Motor Skills, 2012, 115, 27-42.	1.3	3
117	Pigeons integrate visual motion signals differently than humans. Scientific Reports, 2019, 9, 13411.	3.3	3
118	Investigating reactions of squirrel monkeys (Saimiri sciureus) towards unequal food distributions in a tray-pulling paradigm. Primates, 2020, 61, 717-727.	1.1	3
119	Cross-modal concept of human gender in dogs (Canis familiaris). Japanese Journal of Animal Psychology, 2013, 63, 123-130.	0.3	3
120	Nine―to 11â€monthâ€old infants' reasoning about causality in anomalous human movements ¹ . Japanese Psychological Research, 2009, 51, 246-257.	1,1	2
121	Colour versus quantity as cues in reverse-reward-competent squirrel monkeys (<i>Saimiri) Tj ETQq1 1 0.784314 r</i>	gBT _{1.1} /Over	logk 10 Tf 50
122	Differential motion processing between species facing Ternus–Pikler display: Non-retinotopic humans versus retinotopic pigeons. Vision Research, 2014, 103, 32-40.	1.4	2
123	Do cats (Felis catus) predict the presence of an invisible object from sound?. Journal of Veterinary Behavior: Clinical Applications and Research, 2015, 10, 407-412.	1.2	2
124	RECOLLECTION OF WHAT-WHERE-WHICH MEMORY IN DEGUS (<i>OCTODON DEGUS</i>). Psychologia, 2016, 59, 148-162.	0.3	2
125	Experience matters: Dogs (Canis familiaris) infer physical properties of objects from movement clues. Behavioural Processes, 2017, 136, 54-58.	1.1	2
126	Short poly-glutamine repeat in the androgen receptor in New World monkeys. Meta Gene, 2017, 14, 105-113.	0.6	2

#	Article	IF	CITATIONS
127	Predator experience changes spider mites' habitat choice even without current threat. Scientific Reports, 2018, 8, 8388.	3.3	2
128	Social Intelligence in Capuchin Monkeys (Cebus apella)., 2008,, 3-20.		2
129	Phylogeny and ontogeny of mental time. Neuroscience Research, 2020, 170, 13-17.	1.9	1
130	Pigeons (Columba livia) integrate visual motion using the vector average rule: effect of viewing distance. Animal Cognition, 2020, 23, 819-825.	1.8	1
131	Capuchin monkeys (Sapajus apella) failed to seek information for their potential forgetting in a computerized task. Primates, 2020, 61, 623-632.	1.1	1
132	Motion parallax via head movements modulates visuo-motor control in pigeons. Journal of Experimental Biology, 2021, 224, .	1.7	1
133	On experimental tests for studying altruism in capuchin monkeys. Behavioural Processes, 2021, 189, 104424.	1.1	1
134	What You See is Different from What I See: Species Differences in Visual Perception., 2008,, 29-54.		1
135	Species Recognition by Macaques Measured by Sensory Reinforcement. , 2008, , 368-382.		1
136	ãf•ã,µã,ªãfžã,ã,¶ãf«ã®çŸ¥æ€§ã•感æf Primate Research, 2009, 24, 241-263.	0.0	1
137	Transfer from "edible" categorization training to feeding behavior in pigeons (Columba livia)1. Japanese Psychological Research, 2006, 48, 27-33.	1.1	0
138	Acquisition of a Same-Different Discrimination Task by Pigeons (<i>Columba Livia</i>). Psychological Reports, 2012, 110, 251-262.	1.7	0
139	Affective States, Motivation, and Prosocial Behaviour in Primates. Interdisciplinary Evolution Research, 2018, , 27-45.	0.3	0
140	Social intelligence in tufted capuchin monkeys. Japanese Journal of Animal Psychology, 2009, 59, 117-130.	0.3	0
141	What do dogs see in human behavior?. Japanese Journal of Animal Psychology, 2016, 66, 11-21.	0.3	0
142	Transitive inference in cleaner wrasses (Labroides dimidiatus). , 2020, 15, e0237817.		0
143	Transitive inference in cleaner wrasses (Labroides dimidiatus). , 2020, 15, e0237817.		0
144	Transitive inference in cleaner wrasses (Labroides dimidiatus). , 2020, 15, e0237817.		0

ARTICLE IF CITATIONS

145 Transitive inference in cleaner wrasses (Labroides dimidiatus)., 2020, 15, e0237817. 0