John Rakovan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11626848/publications.pdf

Version: 2024-02-01

394421 361022 1,364 88 19 35 citations h-index g-index papers 91 91 91 1600 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Geochronological characterization of Llallagua altered porphyry and hydrothermal vein assemblages from selected phosphate minerals and zircon. Lithos, 2022, 410-411, 106584.	1.4	O
2	Who's Who in Mineral Names: John Michael Hughes (b. 1952). Rocks and Minerals, 2022, 97, 92-93.	0.1	0
3	Fluorescence Zoning: Examples in Apatite. Rocks and Minerals, 2022, 97, 36-47.	0.1	2
4	Apatite and the Apatite Supergroup. Rocks and Minerals, 2021, 96, 13-19.	0.1	2
5	Coming to Terms with Fluorescence: A Short Glossary of Common Terms in the Context of Mineral Fluorescence. Rocks and Minerals, 2021, 96, 20-23.	0.1	3
6	The origin of trapiche-like inclusion patterns in quartz from Inner Mongolia, China. American Mineralogist, 2021, , .	1.9	2
7	Model of interface-coupled dissolution-precipitation mechanism of pseudomorphic replacement reaction in aqueous solutions based on the system of cerussite PbCO3 – pyromorphite Pb5(PO4)3Cl. Geochimica Et Cosmochimica Acta, 2020, 289, 1-13.	3.9	10
8	The Crystallinity of Apatite in Contact with Metamict Pyrochlore from the Silver Crater Mine, ON, Canada. Minerals (Basel, Switzerland), 2020, 10, 244.	2.0	3
9	Vanadium-rich Muscovite from Austria: Crystal Structure, Chemical Analysis, and Spectroscopic Investigations. Canadian Mineralogist, 2019, 57, 383-389.	1.0	2
10	Natural solid-state ion conduction induces metal isotope fractionation. Geology, 2019, 47, 617-621.	4.4	11
11	Non-Destructive Study of Bulk Crystallinity and Elemental Composition of Natural Gold Single Crystal Samples by Energy-Resolved Neutron Imaging. Scientific Reports, 2017, 7, 40759.	3.3	35
12	Column anion arrangements in chemically zoned ternary chlorapatite and fluorapatite from Kurokura, Japan. American Mineralogist, 2017, 102, 720-727.	1.9	6
13	Word to the Wise: Geode (and Friends). Rocks and Minerals, 2017, 92, 85-91.	0.1	3
14	Connoisseur's Choice: Wire Silver, Kongsberg, Norway & Samp; Wire Gold, Ground Hog Mine, Gilman, Colorado. Rocks and Minerals, 2017, 92, 344-357.	0.1	3
15	Gold Crystals from the Lena Goldfields, Bodaibo Area, Eastern Siberia, Russia: Exceptional Hoppered Octahedra and Pseudomorphs after Pyrite. Rocks and Minerals, 2017, 92, 410-425.	0.1	4
16	Geochemical and textural characterization of phosphate accessory phases in the vein assemblage and metasomatically altered Llallagua tin porphyry. Mineralogy and Petrology, 2017, 111, 547-568.	1,1	9
17	Solid solution in the apatite OH-Cl binary system: Compositional dependence of solid-solution mechanisms in calcium phosphate apatites along the Cl-OH binary. American Mineralogist, 2016, 101, 1783-1791.	1.9	19
18	Mimetite Formation from Goethite-Adsorbed Ions. Microscopy and Microanalysis, 2016, 22, 698-705.	0.4	1

#	Article	IF	CITATIONS
19	Arsenate substitution in lead hydroxyl apatites: A Raman spectroscopic study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 152, 370-377.	3.9	18
20	Fourier transform infrared spectroscopic study of hydroxylpyromorphite Pb10(PO4)6OH2â€"hydroxylmimetite Pb10(AsO4)6(OH)2 solid solution series. Polyhedron, 2015, 99, 103-111.	2.2	19
21	Connoisseur's Choice: Fluorapatite, Acushnet Quarry, Bristol County, Massachusetts. Rocks and Minerals, 2015, 90, 244-259.	0.1	4
22	Optically Sector-Zoned (Star) Diamonds from Zimbabwe. Rocks and Minerals, 2014, 89, 173-178.	0.1	6
23	Neutron Diffraction Analysis Verifies Existence of Some of the World's Largest Gold Crystals. Rocks and Minerals, 2014, 89, 404-407.	0.1	2
24	Fluorapatite From A Remarkable Occurrence of Graphite And Associated Minerals. Rocks and Minerals, 2013, 88, 178-183.	0.1	7
25	Fluorite in Mississippi Valley–type Deposits. Rocks and Minerals, 2013, 88, 20-49.	0.1	7
26	PEG 2013, 6th International Symposium on Granitic Pegmatites, 26 May–2 June 2013. Rocks and Minerals, 2013, 88, 539-543.	0.1	0
27	Stephen Guggenheim. Clays and Clay Minerals, 2013, 61, 473-474.	1.3	O
28	The Conco Mine, North Aurora, Kane County, Illinois. Rocks and Minerals, 2012, 87, 116-125.	0.1	1
29	Crystal chemistry of Th in fluorapatite. American Mineralogist, 2011, 96, 23-33.	1.9	24
30	Time-resolved in situ studies of apatite formation in aqueous solutions. American Mineralogist, 2010, 95, 1224-1236.	1.9	35
31	Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy, 2010, 22, 163-179.	1.3	277
32	A New Apatite Nomenclature. Rocks and Minerals, 2010, 85, 204-205.	0.1	1
33	Word to the Wise: Materials Mineralogy. Rocks and Minerals, 2010, 85, 352-357.	0.1	O
34	Characterization of Gold Crystallinity by Diffraction Methods. Rocks and Minerals, 2009, 84, 54-62.	0.1	9
35	Sectoral Zoning. Rocks and Minerals, 2009, 84, 171-176.	0.1	11
36	Site preference of U and Th in Cl, F, and Sr apatites. American Mineralogist, 2009, 94, 345-351.	1.9	53

#	Article	IF	CITATIONS
37	Tanakamiyama: A Classic Japanese Pegmatite District. Rocks and Minerals, 2009, 84, 520-527.	0.1	4
38	Environmental Mineralogy. Rocks and Minerals, 2008, 83, 172-175.	0.1	2
39	Kimberlite: <i>One of the best preserved dikesâ€"and possibly the first foundâ€"is currently located in a parking lot on Green Street in downtown Syracuse, New York.</i> . Rocks and Minerals, 2008, 83, 267-270.	0.1	0
40	NYF-Type Pegmatite. Rocks and Minerals, 2008, 83, 351-353.	0.1	5
41	The crystal chemistry of whitlockite and merrillite and the dehydrogenation of whitlockite to merrillite. American Mineralogist, 2008, 93, 1300-1305.	1.9	65
42	Greenstone. Rocks and Minerals, 2008, 83, 553-556.	0.1	1
43	Synchrotron microanalytical methods in the study of trace and minor elements in apatite. Mineralogia, 2008, 39, 31-40.	0.8	2
44	Who's Who in Mineral Names. Rocks and Minerals, 2007, 82, 516-519.	0.1	0
45	Hemimorphism. Rocks and Minerals, 2007, 82, 329-337.	0.1	9
46	Words to the Wise— More than 4,000 To Be Exact. Rocks and Minerals, 2007, 82, 423-424.	0.1	4
47	Mississippi Valley-Type Deposits. Rocks and Minerals, 2006, 81, 69-71.	0.1	8
48	Phase Transition. Rocks and Minerals, 2006, 81, 467-469.	0.1	2
49	News from Japan: Part 4: The University of Tokyo (Wakabayashi) and National Science Museum (Sakurai) Collections and a Plethora of Local Monuments and Mineral and Mining Museums. Rocks and Minerals, 2006, 81, 188-198.	0.1	0
50	Sakura Ishi (Cherry Blossom Stones): Mica Pseudomorphs of Complex Cordierite-Indialite Intergrowths from Kameoka, Kyoto Prefecture, Japan. Rocks and Minerals, 2006, 81, 284-292.	0.1	4
51	"A" Mica. Rocks and Minerals, 2006, 81, 235-235.	0.1	O
52	Diatreme. Rocks and Minerals, 2006, 81, 153-154.	0.1	2
53	Epitaxy. Rocks and Minerals, 2006, 81, 317-320.	0.1	7
54	Desert Varnish. Rocks and Minerals, 2006, 81, 393-394.	0.1	1

#	Article	IF	Citations
55	News from Japan Part 1: Kyoto Mineral Shops, the Masutomi Geology Museum, and Cherry Blossom Stones. Rocks and Minerals, 2005, 80, 270-273.	0.1	1
56	Word to the wise: Solid solution. Rocks and Minerals, 2005, 80, 449-450.	0.1	4
57	News: from Japan. Rocks and Minerals, 2005, 80, 440-445.	0.1	2
58	Microscopy Studies of the Palygorskite-to-Smectite Transformation. Clays and Clay Minerals, 2005, 53, 92-99.	1.3	37
59	Word to the Wise. Rocks and Minerals, 2005, 80, 202-203.	0.1	2
60	Word to the Wise: Metasomatism. Rocks and Minerals, 2005, 80, 63-64.	0.1	3
61	Pillow Basalt. Rocks and Minerals, 2005, 80, 287-287.	0.1	0
62	The atomic arrangement of the ganophyllite-group modulated layer silicates as determined from the orthorhombic dimorph of tamaite, with the elusive 16.8 Å ganophyllite-group superstructure revealed. American Mineralogist, 2004, 88, 1324-1330.	1.9	7
63	A Word to the Wise: Energy Dispersive Spectrometry (EDS). Rocks and Minerals, 2004, 79, 194-195.	0.1	4
64	A Microtexture Study of Palygorskite-rich Sediments from the Hawthorne Formation, Southern Georgia, by Transmission Electron Microscopy and Atomic Force Microscopy. Clays and Clay Minerals, 2004, 52, 263-274.	1.3	29
65	Synthesis of REE and Y phosphates by Pb-free flux methods and their utilization as standards for electron microprobe analysis and in design of monazite chemical U-Th-Pb dating protocol. American Mineralogist, 2004, 89, 1533-1539.	1.9	44
66	Mn-rich fluorapatite from Austria: Crystal structure, chemical analysis, and spectroscopic investigations. American Mineralogist, 2004, 89, 629-632.	1.9	24
67	Word to the Wise: X-Ray Diffraction (XRD). Rocks and Minerals, 2004, 79, 351-353.	0.1	1
68	A Word to the Wise:Hydrothermal. Rocks and Minerals, 2004, 79, 64-65.	0.1	1
69	Word to the Wise: Growth Hillock. Rocks and Minerals, 2004, 79, 415-417.	0.1	3
70	Word to the Wise: Zeolite. Rocks and Minerals, 2004, 79, 271-273.	0.1	2
71	A Word to the Wise: Placer. Rocks and Minerals, 2004, 79, 133-134.	0.1	2
72	Ferroaxinite from Lime Crest Quarry, Sparta, New Jersey. Rocks and Minerals, 2003, 78, 252-256.	0.1	1

#	Article	IF	CITATIONS
73	A Word to the Wise: Hypogene & Supergene. Rocks and Minerals, 2003, 78, 419-419.	0.1	5
74	A Word to the Wise: Skarn. Rocks and Minerals, 2003, 78, 271-271.	0.1	1
75	Fe and Ni impurities in synthetic diamond. American Mineralogist, 2003, 88, 1555-1559.	1.9	12
76	Multiple length scale growth spirals on metamorphic graphite {001} surfaces studied by atomic force microscopy. American Mineralogist, 2002, 87, 17-24.	1.9	42
77	Structural Characterization of U(VI) in Apatite by X-ray Absorption Spectroscopy. Environmental Science & Environmental Scienc	10.0	78
78	Surface-structure-controlled sectoral zoning of the rare earth elements in fluorite from Long Lake, New York, and Bingham, New Mexico, USA. Geochimica Et Cosmochimica Acta, 2002, 66, 997-1009.	3.9	35
79	3. Growth and Surface Properties of Apatite. , 2002, , 51-86.		10
80	Evidence of heterovalent europium in zoned Llallagua apatite using wavelength dispersive XANES. American Mineralogist, 2001, 86, 697-700.	1.9	54
81	Microtopographic evolution of mineral surfaces as a tool to identify and date young fault scarps in bedrock. Journal of Geodynamics, 2000, 29, 393-406.	1.6	0
82	Aspects of goethite surface microtopography, structure, chemistry, and reactivity. American Mineralogist, 1999, 84, 884-894.	1.9	61
83	Surface Structural Controls on Trace Element Incorporation during Crystal Growth. , 1999, , 143-162.		12
84	Heterogeneous Oxidation and Precipitation of Aqueous Mn(II) at the Goethite Surface: A SPM Study. Microscopy and Microanalysis, 1998, 4, 600-601.	0.4	0
85	Use of surface-controlled REE sectoral zoning in apatite from Llallagua, Bolivia, to determine a single-crystal SmNd age. Earth and Planetary Science Letters, 1997, 146, 329-336.	4.4	43
86	Intracrystalline rare earth element distributions in apatite: Surface structural influences on incorporation during growth. Geochimica Et Cosmochimica Acta, 1996, 60, 4435-4445.	3.9	92
87	Structural relationships among some BePO-, BeAsO-, and AlSiO-RHO framworks. Zeolites, 1994, 14, 25-34.	0.5	21
88	Amethyst Sceptered Quartz from Ashaway Village, Hopkinton, Rhode Island. Rocks and Minerals, 1986, 61, 247-250.	0.1	2