John E Eriksson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11626491/publications.pdf Version: 2024-02-01

IOHN F FRIKSSON

#	Article	IF	CITATIONS
1	Novel functions of vimentin in cell adhesion, migration, and signaling. Experimental Cell Research, 2007, 313, 2050-2062.	1.2	638
2	Targeting of Porous Hybrid Silica Nanoparticles to Cancer Cells. ACS Nano, 2009, 3, 197-206.	7.3	477
3	Vimentin function in lymphocyte adhesion and transcellular migration. Nature Cell Biology, 2006, 8, 156-162.	4.6	388
4	Introducing intermediate filaments: from discovery to disease. Journal of Clinical Investigation, 2009, 119, 1763-1771.	3.9	339
5	Intermediate Filament Protein Partnership in Astrocytes. Journal of Biological Chemistry, 1999, 274, 23996-24006.	1.6	313
6	MAPK/ERK Overrides the Apoptotic Signaling from Fas, TNF, and TRAIL Receptors. Journal of Biological Chemistry, 2001, 276, 16484-16490.	1.6	287
7	Vimentin coordinates fibroblast proliferation and keratinocyte differentiation in wound healing via TGF-β–Slug signaling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4320-7.	3.3	287
8	Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends in Biochemical Sciences, 2002, 27, 619-627.	3.7	284
9	Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. Journal of Cell Science, 2004, 117, 919-932.	1.2	277
10	Targeted Intracellular Delivery of Hydrophobic Agents using Mesoporous Hybrid Silica Nanoparticles as Carrier Systems. Nano Letters, 2009, 9, 3308-3311.	4.5	209
11	Enhancement of Fibroblast Collagenase (Matrix Metalloproteinase-1)Gene Expression by Ceramide Is Mediated by Extracellular Signal-regulated and Stress-activated Protein Kinase Pathways. Journal of Biological Chemistry, 1998, 273, 5137-5145.	1.6	184
12	Cancerâ€Cellâ€Specific Induction of Apoptosis Using Mesoporous Silica Nanoparticles as Drugâ€Delivery Vectors. Small, 2010, 6, 1234-1241.	5.2	163
13	Tissue inhibitor of metalloproteinases-3 induces apoptosis in melanoma cells by stabilization of death receptors. Oncogene, 2003, 22, 2121-2134.	2.6	162
14	Bidirectional Interplay between Vimentin Intermediate Filaments and Contractile Actin Stress Fibers. Cell Reports, 2015, 11, 1511-1518.	2.9	157
15	A nestin scaffold links Cdk5/p35 signaling to oxidant-induced cell death. EMBO Journal, 2006, 25, 4808-4819.	3.5	150
16	The Expression of Intermediate Filament protein Nestin as Related to Vimentin and Desmin in Regenerating Skeletal Muscle. Journal of Neuropathology and Experimental Neurology, 2001, 60, 588-597.	0.9	144
17	Binding and Phosphorylation of Par-4 by Akt Is Essential for Cancer Cell Survival. Molecular Cell, 2005, 20, 33-44.	4.5	143
18	Intermediate filament dynamics. Current Opinion in Cell Biology, 1992, 4, 99-104.	2.6	136

JOHN E ERIKSSON

#	Article	IF	CITATIONS
19	Interphase phosphorylation of lamin A. Journal of Cell Science, 2014, 127, 2683-96.	1.2	134
20	Rapid Turnover of c-FLIPshort Is Determined by Its Unique C-terminal Tail. Journal of Biological Chemistry, 2005, 280, 27345-27355.	1.6	133
21	Cdk5 Regulates the Organization of Nestin and Its Association with p35. Molecular and Cellular Biology, 2003, 23, 5090-5106.	1.1	131
22	Vimentin intermediate filaments control actin stress fiber assembly through GEF-H1 and RhoA. Journal of Cell Science, 2017, 130, 892-902.	1.2	131
23	Mitotic Reorganization of the Intermediate Filament Protein Nestin Involves Phosphorylation by cdc2 Kinase. Journal of Biological Chemistry, 2001, 276, 16456-16463.	1.6	105
24	The Intermediate Filament Protein Keratin 8 Is a Novel Cytoplasmic Substrate for c-Jun N-terminal Kinase. Journal of Biological Chemistry, 2002, 277, 10767-10774.	1.6	103
25	Intermediate Filaments as Signaling Platforms. Science's STKE: Signal Transduction Knowledge Environment, 2006, 2006, pe53-pe53.	4.1	101
26	Erythroid Differentiation Sensitizes K562 Leukemia Cells to TRAIL-Induced Apoptosis by Downregulation of c-FLIP. Molecular and Cellular Biology, 2003, 23, 1278-1291.	1.1	100
27	Inhibition of Mitogen-Activated Kinase Signaling Sensitizes HeLa Cells to Fas Receptor-Mediated Apoptosis. Molecular and Cellular Biology, 1999, 19, 5991-6002.	1.1	99
28	Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Signaling in Activated T Cells Abrogates TRAIL-Induced Apoptosis Upstream of the Mitochondrial Amplification Loop and Caspase-8. Journal of Immunology, 2002, 169, 2851-2860.	0.4	86
29	Selective regulation of Notch ligands during angiogenesis is mediated by vimentin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4574-E4581.	3.3	86
30	Intermediate Filaments and the Regulation of Cell Motility during Regeneration and Wound Healing. Cold Spring Harbor Perspectives in Biology, 2017, 9, a022046.	2.3	82
31	Roles of vimentin in health and disease. Genes and Development, 2022, 36, 391-407.	2.7	79
32	Enhancement of fibroblast collagenase-1 (MMP-1) gene expression by tumor promoter okadaic acid is mediated by stress-activated protein kinases jun N-terminal kinase and p38. Matrix Biology, 1998, 17, 547-557.	1.5	78
33	Providing cellular signposts – Postâ€ŧranslational modifications of intermediate filaments. FEBS Letters, 2008, 582, 2140-2148.	1.3	75
34	Sugar-decorated mesoporous silica nanoparticles as delivery vehicles for the poorly soluble drug celastrol enables targeted induction of apoptosis in cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 11-21.	2.0	75
35	Reference-facilitated Phosphoproteomics. Molecular and Cellular Proteomics, 2007, 6, 1380-1391.	2.5	72
36	Disturbances in hepatic cell-cycle regulation in mice with assembly-deficient keratins 8/18. Hepatology, 2001, 34, 1174-1183.	3.6	68

JOHN E ERIKSSON

#	Article	IF	CITATIONS
37	Phosphorylation of lamins determine their structural properties and signaling functions. Nucleus, 2015, 6, 166-171.	0.6	64
38	Vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic stress. Scientific Reports, 2019, 9, 12415.	1.6	62
39	Shape engineering vs organic modification of inorganic nanoparticles as a tool for enhancing cellular internalization. Nanoscale Research Letters, 2012, 7, 358.	3.1	61
40	A simple mass-action model for the eukaryotic heat shock response and its mathematical validation. Natural Computing, 2011, 10, 595-612.	1.8	53
41	CD73 Participates in Cellular Multiresistance Program and Protects against TRAIL-Induced Apoptosis. Journal of Immunology, 2008, 181, 464-475.	0.4	51
42	Insights into intermediate filament regulation from development to ageing. Journal of Cell Science, 2011, 124, 1363-1372.	1.2	47
43	Nestin Is Not Essential for Development of the CNS But Required for Dispersion of Acetylcholine Receptor Clusters at the Area of Neuromuscular Junctions. Journal of Neuroscience, 2011, 31, 11547-11552.	1.7	45
44	Nestin as a regulator of Cdk5 in differentiating myoblasts. Molecular Biology of the Cell, 2011, 22, 1539-1549.	0.9	42
45	The diverse roles and dynamic rearrangement of vimentin during viral infection. Journal of Cell Science, 2021, 134, .	1.2	42
46	Nestin regulates prostate cancer cell invasion by influencing FAK and integrin localisation and functions. Journal of Cell Science, 2014, 127, 2161-73.	1.2	37
47	Type-2A protein phosphatase activity is required to maintain death receptor responsiveness. Oncogene, 2003, 22, 7677-7686.	2.6	35
48	Vimentin Is a Functional Partner of Hormone Sensitive Lipase And Facilitates Lipolysis. Journal of Proteome Research, 2010, 9, 1786-1794.	1.8	33
49	Sphingolipids inhibit vimentin-dependent cell migration. Journal of Cell Science, 2015, 128, 2057-2069.	1.2	33
50	Phosphorylation-Based Signaling in Fas Receptor-Mediated Apoptosis. Critical Reviews in Immunology, 2000, 20, 32.	1.0	33
51	Instant decisions: transcription-independent control of death-receptor-mediated apoptosis. Trends in Biochemical Sciences, 2004, 29, 601-608.	3.7	30
52	Fast track to a phosphoprotein sketch – MALDI-TOF characterization of TLC-based tryptic phosphopeptide maps at femtomolar detection sensitivity. Proteomics, 2006, 6, 5676-5682.	1.3	27
53	CD95 capping is ROCK-dependent and dispensable for apoptosis. Journal of Cell Science, 2005, 118, 2211-2223.	1.2	23
54	Nestin contributes to skeletal muscle homeostasis and regeneration. Journal of Cell Science, 2017, 130, 2833-2842.	1.2	20

JOHN E ERIKSSON

#	Article	IF	CITATIONS
55	Exosomal vimentin from adipocyte progenitors accelerates wound healing. Cytoskeleton, 2020, 77, 399-413.	1.0	19
56	Quantitative proteomic characterization and comparison of T helper 17 and induced regulatory T cells. PLoS Biology, 2018, 16, e2004194.	2.6	17
57	[42] Strategies to assess phosphoprotein phosphatase and protein kinase-mediated regulation of the cytoskeleton. Methods in Enzymology, 1998, 298, 542-569.	0.4	14
58	Studying Nestin and its Interrelationship with Cdk5. Methods in Enzymology, 2016, 568, 509-535.	0.4	11
59	Approaches to Study Posttranslational Regulation of Intermediate Filament Proteins. Methods in Cell Biology, 2004, 78, 373-409.	0.5	5
60	Phosphopeptide enrichment with stable spatial coordination on a titanium dioxide coated glass slide. Rapid Communications in Mass Spectrometry, 2009, 23, 3661-3667.	0.7	4
61	Quantitative bioimage analytics enables measurement of targeted cellular stress response induced by celastrol-loaded nanoparticles. Cell Stress and Chaperones, 2019, 24, 735-748.	1.2	4
62	Harmful vimentin manifests itself as multiorgan failure. European Journal of Human Genetics, 2020, 28, 1139-1140.	1.4	4
63	Vimentin Suppresses Inflammation and Tumorigenesis in the Mouse Intestine. Frontiers in Cell and Developmental Biology, 2022, 10, 862237.	1.8	4
64	Internal epithelia in <i>Drosophila</i> display rudimentary competence to form cytoplasmic networks of transgenic human vimentin. FASEB Journal, 2017, 31, 5332-5341.	0.2	2
65	Domainâ€Specific Phosphorylation as a Regulator of Intermediate Filaments. Advances in Molecular and Cell Biology, 2006, 37, 307-332.	0.1	0