
Andrew C Lang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11626299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Control of MXenes' electronic properties through termination and intercalation. Nature Communications, 2019, 10, 522.	12.8	721
2	Direct Detection Electron Energy-Loss Spectroscopy: A Method to Push the Limits of Resolution and Sensitivity. Scientific Reports, 2017, 7, 8243.	3.3	103
3	Evidence for Bulk Ripplocations in Layered Solids. Scientific Reports, 2016, 6, 33451.	3.3	73
4	Spherical nanoindentation, modeling and transmission electron microscopy evidence for ripplocations in Ti3SiC2. Acta Materialia, 2017, 131, 141-155.	7.9	51
5	Structural transition and recovery of Ge implanted <i>l²</i> -Ga2O3. Applied Physics Letters, 2020, 117, .	3.3	35
6	Electron-beam-induced ferroelectric domain behavior in the transmission electron microscope: Toward deterministic domain patterning. Physical Review B, 2016, 94, .	3.2	26
7	MgB ₂ ultrathin films fabricated by hybrid physical chemical vapor deposition and ion milling. APL Materials, 2016, 4, 086114.	5.1	22
8	Diffusion of implanted Ge and Sn in \hat{l}^2 -Ga2O3. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	1.2	22
9	Enhancement of lower critical field by reducing the thickness of epitaxial and polycrystalline MgB2 thin films. APL Materials, 2015, 3, .	5.1	15
10	Atomic-Scale Characterization of Oxide Thin Films Gated by Ionic Liquid. ACS Applied Materials & Interfaces, 2014, 6, 17018-17023.	8.0	9
11	Direct Correlation of MXene Surface Chemistry and Electronic Properties. Microscopy and Microanalysis, 2018, 24, 1606-1607.	0.4	8
12	Toward high-throughput defect density quantification: A comparison of techniques for irradiated samples. Ultramicroscopy, 2019, 206, 112820.	1.9	8
13	Effects of cation stoichiometry on electronic and structural properties of LaNiO3. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	2.1	7
14	Performance of a Direct Electron Detector for the Application of Electron Energy-Loss Spectroscopy. Microscopy and Microanalysis, 2016, 22, 336-337.	0.4	5
15	Thermal Stability of High Entropy Alloys during in Situ TEM Heating Microscopy and Microanalysis, 2018, 24, 1928-1929.	0.4	3
16	Direct Detection EELS at High Energy: Elemental Mapping and EXELFS. Microscopy and Microanalysis, 2019, 25, 584-585.	0.4	2
17	Advantages of Direct Detection and Electron Counting for Electron Energy Loss Spectroscopy Data Acquisition and the Quest of Extremely High-Energy Edges Using Eels. Microscopy and Microanalysis, 2017, 23, 60-61.	0.4	1
18	Early Stages of Secondary Phase Formation in Multicomponent Alloys Using an in situ TEM Heating Approach. Microscopy and Microanalysis, 2019, 25, 1536-1537.	0.4	1

#	Article	IF	CITATIONS
19	Application of Electron Counting to Electron Energy-loss Spectroscopy and Implications for Low-Dose Characterization. Microscopy and Microanalysis, 2017, 23, 1796-1797.	0.4	Ο
20	Direct Detection Electron Energy-loss Spectroscopy: Applications in Low-dose Chemical Mapping and In Situ Heating+biasing. Microscopy and Microanalysis, 2018, 24, 452-453.	0.4	0