Kurt Mendgen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11624832/publications.pdf

Version: 2024-02-01

64 papers

3,934 citations

35 h-index 58 g-index

64 all docs

64 docs citations

64 times ranked 2898 citing authors

#	Article	IF	CITATIONS
1	Plant infection and the establishment of fungal biotrophy. Trends in Plant Science, 2002, 7, 352-356.	8.8	349
2	Identification of a Protein from Rust Fungi Transferred from Haustoria into Infected Plant Cells. Molecular Plant-Microbe Interactions, 2005, 18, 1130-1139.	2.6	257
3	Rust haustoria: nutrient uptake and beyond. New Phytologist, 2003, 159, 93-100.	7.3	243
4	Infection structures of fungal plant pathogens – a cytological and physiological evaluation. New Phytologist, 1993, 124, 193-213.	7.3	214
5	Characterization of In Plantaâ€"Induced Rust Genes Isolated from a Haustorium-Specific cDNA Library. Molecular Plant-Microbe Interactions, 1997, 10, 427-437.	2.6	178
6	Possible Roles for Mannitol and Mannitol Dehydrogenase in the Biotrophic Plant Pathogen Uromyces fabae. Plant Physiology, 2005, 137, 190-198.	4.8	141
7	Signal and nutrient exchange at biotrophic plant–fungus interfaces. Current Opinion in Plant Biology, 2001, 4, 322-327.	7.1	125
8	A Putative Amino Acid Transporter Is Specifically Expressed in Haustoria of the Rust Fungus Uromyces fabae. Molecular Plant-Microbe Interactions, 1997, 10, 438-445.	2.6	121
9	Chitinases and \hat{l}^2 -1,3-Glucanases in the Apoplastic Compartment of Oat Leaves (<i>Avena sativa</i> L.). Plant Physiology, 1988, 88, 270-275.	4.8	117
10	Microarray analysis of expressed sequence tags from haustoria of the rust fungus Uromyces fabae. Fungal Genetics and Biology, 2006, 43, 8-19.	2.1	101
11	PR-1 protein inhibits the differentiation of rust infection hyphae in leaves of acquired resistant broad bean. Plant Journal, 1999, 19, 625-633.	5.7	96
12	Cloning and Characterization of a Novel Invertase from the Obligate Biotroph Uromyces fabae and Analysis of Expression Patterns of Host and Pathogen Invertases in the Course of Infection. Molecular Plant-Microbe Interactions, 2006, 19, 625-634.	2.6	95
13	Only a Few Fungal Species Dominate Highly Diverse Mycofloras Associated with the Common Reed. Applied and Environmental Microbiology, 2006, 72, 1118-1128.	3.1	88
14	High Level Activation of Vitamin B1 Biosynthesis Genes in Haustoria of the Rust Fungus Uromyces fabae. Molecular Plant-Microbe Interactions, 2000, 13, 629-636.	2.6	78
15	Biotrophy and rust haustoria. Physiological and Molecular Plant Pathology, 2000, 56, 141-145.	2.5	74
16	Genetic diversity of fungi closely associated with common reed. New Phytologist, 2001, 149, 589-598.	7.3	73
17	Endocytosis and Membrane Turnover in the Germ Tube ofUromyces fabae. Fungal Genetics and Biology, 1998, 24, 77-85.	2.1	69
18	Plasma Membrane H+-ATPase Activity in Spores, Germ Tubes, and Haustoria of the Rust FungusUromyces viciae-fabae. Fungal Genetics and Biology, 1996, 20, 30-35.	2.1	67

#	Article	IF	CITATIONS
19	Colonization of barley roots by endophytic fungi and their reduction of take-all caused by Gaeumannomyces graminis var. <i>tritici</i> . Canadian Journal of Microbiology, 2008, 54, 600-609.	1.7	67
20	The haustorial transcriptomes of <i><scp>U</scp>romyces appendiculatus</i> and <i><scp>P</scp>hakopsora pachyrhizi</i> pathology, 2014, 15, 379-393.	4.2	67
21	Quantitative estimation of the surface carbohydrates on the infection structures of rust fungi with enzymes and lectins. Archives of Microbiology, 1985, 140, 307-311.	2.2	58
22	The rust transferred proteins—a new family of effector proteins exhibiting protease inhibitor function. Molecular Plant Pathology, 2013, 14, 96-107.	4.2	58
23	Adhesion Pad Formation and the Involvement of Cutinase and Esterases in the Attachment of Uredospores to the Host Cuticle. Plant Cell, 1992, 4, 1101.	6.6	57
24	Endocytosis of 1,3-?-glucans by broad bean cells at the penetration site of the cowpea rust fungus (haploid stage). Planta, 1994, 195, 282.	3.2	57
25	Identification of glycoproteins specific to biotrophic intracellular hyphae formed in the Colletotrichum lindemuthianumâ€bean interaction. New Phytologist, 1994, 127, 233-242.	7.3	56
26	Characterization of a novel NADP+-dependent D-arabitol dehydrogenase from the plant pathogen Uromyces fabae. Biochemical Journal, 2005, 389, 289-295.	3.7	54
27	Mycoparasitism of Endophytic Fungi Isolated From Reed on Soilborne Phytopathogenic Fungi and Production of Cell Wall-Degrading Enzymes In Vitro. Current Microbiology, 2009, 59, 584-592.	2.2	54
28	A novel structural effector from rust fungi is capable of fibril formation. Plant Journal, 2013, 75, 767-780.	5.7	52
29	Extracellular Proteases of the Rust Fungus Uromyces viciae-fabae. Experimental Mycology, 1995, 19, 26-34.	1.6	47
30	Pythium phragmitis sp. nov., a new species close to P. arrhenomanes as a pathogen of common reed (Phragmites australis). Mycological Research, 2005, 109, 1337-1346.	2.5	43
31	Nutrient Uptake in Rust Fungi. Phytopathology, 1981, 71, 983.	2.2	43
32	Comparison of various stress responses in oat in compatible and nonhost resistant interactions with rust fungi. Physiological and Molecular Plant Pathology, 1990, 37, 309-321.	2.5	42
33	High Pressure Freezing of Rust Infected Plant Leaves. , 1991, , 31-42.		41
34	Attachment of bean rust cell wall material to host and non-host plant tissue. Archives of Microbiology, 1978, 119, 113-117.	2.2	36
35	The activity of powdery-mildew haustoria after feeding the host cells with different sugars, as measured with a potentiometric cyanine dye. Planta, 1988, 174, 283-288.	3.2	36
36	Basidiospores of rust fungi (Uromyces species) differentiate infection structuresin vitro. Experimental Mycology, 1988, 12, 275-283.	1.6	35

3

#	Article	IF	CITATIONS
37	Targeted Cell Wall Degradation at the Penetration Site of Cowpea Rust Basidiosporelings. Molecular Plant-Microbe Interactions, 1997, 10, 87-94.	2.6	35
38	Volatiles modulate the development of plant pathogenic rust fungi. Planta, 2006, 224, 1353-1361.	3.2	35
39	Rust Basidiospore Germlings and Disease Initiation. , 1991, , 67-99.		35
40	Cellular interaction of the smut fungus <i>Ustacystis waldsteiniae</i> . Canadian Journal of Botany, 1995, 73, 867-883.	1.1	33
41	Pythium litoralesp. nov., a new species from the littoral of Lake Constance, Germany. FEMS Microbiology Letters, 2006, 255, 96-101.	1.8	32
42	Diversity, host, and habitat specificity of oomycete communities in declining reed stands (Phragmites) Tj ETQq0	0 0 rgBT /	Ovgrlock 10 ⁻
43	Analysis of differentiation and development of the specialized infection structures formed by biotrophic fungal plant pathogens using monoclonal antibodies. Canadian Journal of Botany, 1995, 73, 408-417.	1.1	27
44	Microbodies (glyoxysomes) in infection structures of Uromyces phaseoli. Protoplasma, 1973, 78, 477-482.	2.1	26
45	Ultrastructural demonstration of different peroxidase activities during the bean rust infection process. Physiological Plant Pathology, 1975, 6, 275-282.	1.4	23
46	Early events in living epidermal cells of cowpea and broad bean during infection with basidiospores of the cowpea rust fungus. Canadian Journal of Botany, 1991, 69, 2279-2285.	1.1	23
47	Seed-transmitted beneficial endophytic Stagonospora sp. can penetrate the walls of the root epidermis, but does not proliferate in the cortex, of Phragmites australis. Canadian Journal of Botany, 2006, 84, 981-988.	1.1	23
48	The Uredinales: Cytology, Biochemistry, and Molecular Biology. , 2009, , 69-98.		23
49	Microautoradiographic studies on host-parasite interactions II. The exchange of 3H-lysine between Uromyces phaseoli and Phaseolus vulgaris. Archives of Microbiology, 1979, 123, 129-135.	2.2	21
50	Flooding events and rising water temperatures increase the significance of the reed pathogen Pythium phragmitis as a contributing factor in the decline of Phragmites australis. Hydrobiologia, 2008, 613, 109-115.	2.0	20
51	Structural Aspects of Defense. , 2000, , 231-277.		19
52	Different Resistance Mechanisms of Medicago truncatula Ecotypes Against the Rust Fungus Uromyces striatus. Phytopathology, 2005, 95, 153-157.	2.2	18
53	Mechanisms in Growth-Promoting of Cucumber by the Endophytic Fungus Chaetomium globosum Strain ND35. Journal of Fungi (Basel, Switzerland), 2022, 8, 180.	3.5	18
54	Immunocytochemical localization of pectinesterases in hyphae of Phytophthora infestans. Canadian Journal of Botany, 1987, 65, 2607-2613.	1.1	17

#	Article	lF	CITATIONS
55	Widespread Detection of Phytophthora Taxon Salixsoil in the Littoral Zone of Lake Constance, Germany. European Journal of Plant Pathology, 2006, 114, 261-264.	1.7	17
56	Secretion systems and membrane-associated structures in rust fungi after high pressure freezing and freeze-fracturing. Biology of the Cell, 1988, 64, 363-370.	2.0	15
57	Septal pore apparatus of the smut <i>Ustacystis waldsteiniae</i> . Mycologia, 1995, 87, 18-24.	1.9	15
58	Host plant development, water level and water parameters shape Phragmites australis-associated oomycete communities and determine reed pathogen dynamics in a large lake. FEMS Microbiology Ecology, 2009, 69, 255-265.	2.7	12
59	In vivo observation of conidial germination at the oxic–anoxic interface and infection of submerged reed roots by Microdochium bolleyi. FEMS Microbiology Ecology, 2003, 45, 293-299.	2.7	11
60	Endoplasmic Reticulum Subcompartments in a Plant Parasitic Fungus and in Baker's Yeast: Differential Distribution of Lumenal Proteins. Experimental Mycology, 1995, 19, 137-152.	1.6	8
61	Immunolocalization of Pathogen Effectors. Methods in Molecular Biology, 2011, 712, 211-225.	0.9	6
62	Secretion in the Parasitic Phase of Rust Fungi. NATO ASI Series Series H, Cell Biology, 1989, , 281-288.	0.5	1
63	Alternativen beim Pflanzenschutz?. Die Naturwissenschaften, 1983, 70, 235-240.	1.6	0
64	Flooding events and rising water temperatures increase the significance of the reed pathogen pythium phragmitis das a contributing factor in the decline of phragmites australis. , 2008, , 109-115.		0