
Hakan Basagaoglu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11624711/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	A Review on Interpretable and Explainable Artificial Intelligence in Hydroclimatic Applications. Water (Switzerland), 2022, 14, 1230.	2.7	20
2	Reliable Evapotranspiration Predictions with a Probabilistic Machine Learning Framework. Water (Switzerland), 2021, 13, 557.	2.7	13
3	Interpretable vs. noninterpretable machine learning models for data-driven hydro-climatological process modeling. Expert Systems With Applications, 2021, 170, 114498.	7.6	65
4	Scenario-based prediction of climate change impacts on building cooling energy consumption with explainable artificial intelligence. Applied Energy, 2021, 291, 116807.	10.1	70
5	Explainable AI reveals new hydroclimatic insights for ecosystem-centric groundwater management. Environmental Research Letters, 2021, 16, 114024.	5.2	12
6	Effects of Advective-Diffusive Transport of Multiple Chemoattractants on Motility of Engineered Chemosensory Particles in Fluidic Environments. Entropy, 2019, 21, 465.	2.2	1
7	Combined effects of fluid type and particle shape on particles flow in microfluidic platforms. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	10
8	Particle Shape Influences Settling and Sorting Behavior in Microfluidic Domains. Scientific Reports, 2018, 8, 8583.	3.3	22
9	Speed-Up of Colloidal Fluctuating Lattice Boltzmann Simulations through Discrete Approximations of Probability Distributions. , 2017, , .		0
10	Enhanced computational performance of the lattice Boltzmann model for simulating micron- and submicron-size particle flows and non-Newtonian fluid flows. Computer Physics Communications, 2017, 213, 64-71.	7.5	9
11	Computational performance of SequenceL coding of the lattice Boltzmann method for multi-particle flow simulations. Computer Physics Communications, 2017, 213, 92-99.	7.5	3
12	Localization of chemical sources using e. coli chemotaxis. Proceedings of SPIE, 2016, , .	0.8	1
13	Coupled RapidCell and lattice Boltzmann models to simulate hydrodynamics of bacterial transport in response to chemoattractant gradients in confined domains. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	3
14	Assessing the Effects of Epikarst on Groundwater Recharge and Regional Fast-Flow Pathways in a Karstic Aquifer via Impulse-Response Functions. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	1.9	4
15	Lattice Boltzmann simulations of vortex entrapment of particles in a microchannel with curved or flat edges. Microfluidics and Nanofluidics, 2015, 18, 1165-1175.	2.2	12
16	Modeling the Inactivation of Microorganisms Occluded in Effluent Wastewater Particles to Enhance Operation of Filtration and Disinfection Systems. Water Environment Research, 2011, 83, 313-325.	2.7	1
17	Lattice-Boltzmann simulations of repulsive particle-particle and particle-wall interactions: Coughing and choking. Journal of Chemical Physics, 2010, 132, 134111.	3.0	16
18	Sensitivity of the active fracture model parameter to fracture network orientation and injection scenarios. Hydrogeology Journal, 2009, 17, 1347-1358.	2.1	7

Hakan Basagaoglu

#	Article	IF	CITATIONS
19	Inactivation of particle-associated microorganisms in wastewater disinfection: Modeling of ozone and chlorine reactive diffusive transport in polydispersed suspensions. Water Research, 2007, 41, 2189-2201.	11.3	45
20	Radial Pore Diffusion with Nonuniform Intraparticle Porosities. Journal of Environmental Engineering, ASCE, 2004, 130, 1170-1179.	1.4	4
21	Preliminary assessment of transport processes influencing the penetration of chlorine into wastewater particles and the subsequent inactivation of particle-associated organisms. Water Research, 2003, 37, 139-149.	11.3	41
22	Rate Parameters for Methyl tert -Butyl Ether Biodegradation via a Radial Diffusion Model. Journal of Environmental Engineering, ASCE, 2003, 129, 565-570.	1.4	2
23	Formulation of a soil–pesticide transport model based on a compartmental approach. Journal of Contaminant Hydrology, 2002, 56, 1-24.	3.3	9
24	Comment on "Model coupling intra-particle diffusion/sorption, nonlinear sorption, and biodegradation process―by H.K. Karapanagioti, C.M. Gossard, K.A. Strevett, R.L. Kolar, and D.A. Sabatini. Journal of Contaminant Hydrology, 2002, 57, 303-310.	3.3	3
25	Transport in heterogeneous media: Tracer dynamics in complex flow networks. AICHE Journal, 2002, 48, 1121-1131.	3.6	4
26	A diffusion limited sorption kinetics model with polydispersed particles of distinct sizes and shapes. Advances in Water Resources, 2002, 25, 755-772.	3.8	18
27	Linear driving-force model for diffusion and reaction with interphase partitioning. AICHE Journal, 2001, 47, 754-757.	3.6	4
28	Linear driving force approximation to a radial diffusive model. AICHE Journal, 2000, 46, 2097-2105.	3.6	11
29	Joint Management of Surface and Ground Water Supplies. Ground Water, 1999, 37, 214-222.	1.3	35
30	Benefit-Cost Model for an Artificial Recharge Scenario in the San Joaquin Valley, California. Water Resources Management, 1999, 13, 189-203.	3.9	11
31	LAND SUBSIDENCE IN THE LOS BANOS–KETTLEMAN CITY AREA, CALIFORNIA: PAST AND FUTURE OCCURRENCE. Physical Geography, 1999, 20, 67-82.	1.4	1
32	δ-Form approximating problem for a conjunctive water resource management model. Advances in Water Resources, 1999, 23, 69-81.	3.8	19