Yang Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1162385/publications.pdf

Version: 2024-02-01

52	1,417	23	36
papers	citations	h-index	g-index
52	52	52	2035
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	SERS activated platform with three-dimensional hot spots and tunable nanometer gap. Sensors and Actuators B: Chemical, 2018, 258, 163-171.	4.0	208
2	Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS. Scientific Reports, 2016, 6, 25243.	1.6	86
3	Shell-isolated graphene@Cu nanoparticles on graphene@Cu substrates for the application in SERS. Carbon, 2016, 98, 526-533.	5.4	65
4	Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate. Journal of Alloys and Compounds, 2017, 695, 1677-1684.	2.8	56
5	Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene–WS∢sub>2 hybrid nanostructures and Au–Ag bimetallic film. RSC Advances, 2017, 7, 47177-47182.	1.7	50
6	Graphene–silver nanowire hybrid films as electrodes for transparent and flexible loudspeakers. CrystEngComm, 2014, 16, 3532.	1.3	47
7	Suspended CNT-Based FET sensor for ultrasensitive and label-free detection of DNA hybridization. Biosensors and Bioelectronics, 2019, 137, 255-262.	5.3	46
8	Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis. Sensors and Actuators B: Chemical, 2018, 255, 374-383.	4.0	42
9	<i>In-situ</i> electrospun aligned and maize-like AgNPs/PVA@Ag nanofibers for surface-enhanced Raman scattering on arbitrary surface. Nanophotonics, 2019, 8, 1719-1729.	2.9	42
10	Donor effect dominated molybdenum disulfide/graphene nanostructure-based field-effect transistor for ultrasensitive DNA detection. Biosensors and Bioelectronics, 2020, 156, 112128.	5.3	40
11	Label-free and stable serum analysis based on Ag-NPs/PSi surface-enhanced Raman scattering for noninvasive lung cancer detection. Biomedical Optics Express, 2018, 9, 4345.	1.5	39
12	Few-layer MoS2-encapsulated Cu nanoparticle hybrids fabricated by two-step annealing process for surface enhanced Raman scattering. Sensors and Actuators B: Chemical, 2016, 230, 645-652.	4.0	38
13	Facile synthesis of large-area and highly crystalline WS2 film on dielectric surfaces for SERS. Journal of Alloys and Compounds, 2016, 666, 412-418.	2.8	37
14	Roles of graphene nanogap for the AgNFs electrodeposition on the woven Cu net as flexible substrate and its application in SERS. Carbon, 2018, 133, 300-305.	5.4	31
15	Diagnosis of liver cancer based on tissue slice surface enhanced Raman spectroscopy and multivariate analysis. Vibrational Spectroscopy, 2018, 98, 82-87.	1.2	30
16	Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots. Sensors and Actuators B: Chemical, 2018, 263, 408-416.	4.0	29
17	Synthesis of the 3D AgNF/AgNP arrays for the paper-based surface enhancement Raman scattering application. Sensors and Actuators B: Chemical, 2018, 265, 302-309.	4.0	29
18	Large-area MoS ₂ thin layers directly synthesized on Pyramid-Si substrate for surface-enhanced Raman scattering. RSC Advances, 2015, 5, 83899-83905.	1.7	28

#	Article	IF	CITATIONS
19	Evanescent wave absorption sensor based on tapered multimode fiber coated with monolayer graphene film. Optics Communications, 2016, 366, 275-281.	1.0	28
20	Label-free diagnosis of lung cancer with tissue-slice surface-enhanced Raman spectroscopy and statistical analysis. Lasers in Medical Science, 2019, 34, 1849-1855.	1.0	28
21	Formation of the AuNPs/GO@MoS2/AuNPs nanostructures for the SERS application. Sensors and Actuators B: Chemical, 2019, 282, 809-817.	4.0	28
22	Plasma treated graphene FET sensor for the DNA hybridization detection. Talanta, 2021, 223, 121766.	2.9	28
23	Dense AuNP/MoS ₂ hybrid fabrication on fiber membranes for molecule separation and SERS detection. RSC Advances, 2017, 7, 36516-36524.	1.7	23
24	The preparation of a novel iron/manganese binary oxide for the efficient removal of hexavalent chromium [Cr(<scp>vi</scp>)] from aqueous solutions. RSC Advances, 2020, 10, 10612-10623.	1.7	22
25	Large energy pulses generation in a mode-locked Er-doped fiber laser based on CVD-grown Bi ₂ Te ₃ saturable absorber. Optical Materials Express, 2019, 9, 3535.	1.6	22
26	Suspended 3D AgNPs/CNT nanohybrids for the SERS application. Applied Surface Science, 2019, 487, 1077-1083.	3.1	20
27	Two-Dimensional Cold Electron Transport for Steep-Slope Transistors. ACS Nano, 2021, 15, 5762-5772.	7.3	20
28	Diodeâ€Like Selective Enhancement of Carrier Transport through Metal–Semiconductor Interface Decorated by Monolayer Boron Nitride. Advanced Materials, 2020, 32, e2002716.	11.1	19
29	Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum. Optics Express, 2017, 25, 16437.	1.7	18
30	Facile synthesis 3D flexible core-shell graphene/glass fiber via chemical vapor deposition. Nanoscale Research Letters, 2014, 9, 394.	3.1	17
31	Third-order optical nonlinearity in silicon nitride films prepared using magnetron sputtering and application for optical bistability. Journal of Applied Physics, 2019, 125, .	1.1	17
32	Mechanism, Material, Design, and Implementation Principle of Two-Dimensional Material Photodetectors. Nanomaterials, 2021, 11, 2688.	1.9	17
33	Evanescent Wave Absorption Sensor Based Tapered Plastic Optical Fiber Coated with Monolayer Graphene for Ethanol Molecules Detection. Chinese Journal of Chemistry, 2016, 34, 1039-1047.	2.6	16
34	Selenium-assisted controlled growth of graphene–Bi2Se3 nanoplates hybrid Dirac materials by chemical vapor deposition. Applied Surface Science, 2016, 365, 357-363.	3.1	15
35	Three-Dimensional Au/Ag Nanoparticle/Crossed Carbon Nanotube SERS Substrate for the Detection of Mixed Toxic Molecules. Nanomaterials, 2021, 11, 2026.	1.9	15
36	Toward the highly sensitive SERS detection of bio-molecules: the formation of a 3D self-assembled structure with a uniform GO mesh between Ag nanoparticles and Au nanoparticles. Optics Express, 2019, 27, 25091.	1.7	15

#	Article	IF	CITATIONS
37	The effect of temperature on Bi2Se3 nanostructures synthesized via chemical vapor deposition. Journal of Materials Science: Materials in Electronics, 2015, 26, 3881-3886.	1.1	14
38	Fork-shaped paper SERS sensors coated with raspberry-like bimetallic nanospheres for the detection of the boosted mixture: experimental design and applications. Journal of Materials Chemistry C, 2021, 9, 2763-2774.	2.7	13
39	Formation of large-area stretchable 3D graphene–nickel particle foams and their sensor applications. RSC Advances, 2017, 7, 35016-35026.	1.7	12
40	Plasmonic filters based on MoS2@Au/Ag hybrids: Controllable separation, preconcentration, and sensitive SERS detection. Journal of Alloys and Compounds, 2020, 846, 156438.	2.8	11
41	Self-assembly of the stretchable AuNPs@MoS2@GF substrate for the SERS application. Applied Surface Science, 2017, 423, 1072-1079.	3.1	9
42	Design and mechanism of photocurrent-modulated graphene field-effect transistor for ultra-sensitive detection of DNA hybridization. Carbon, 2021, 182, 167-174.	5.4	7
43	MoS ₂ /graphene van der Waals heterojunctions combined with two-layered Au NP for SERS and catalysis analyse. Optics Express, 2021, 29, 38053.	1.7	7
44	A low lasing threshold and widely tunable spaser based on two dark surface plasmons. Scientific Reports, 2017, 7, 13590.	1.6	6
45	Sensitive Flexible Biosensor Based on the Three-Dimensional Layered AgNFs@Graphene Nanohybrids. Sensors and Actuators B: Chemical, 2021, 336, 129737.	4.0	6
46	Theoretical and experimental investigation of the flexible Ag nano-tree@Cu mesh SERS substrate. Journal of Alloys and Compounds, 2022, 908, 164622.	2.8	6
47	Three-dimensional SERS sensor based on the sandwiched G@AgNPs@G/PDMS film. Talanta, 2021, 233, 122481.	2.9	5
48	Synthesis of Monolayer Gold Nanorings Sandwich Film and Its Higher Surface-Enhanced Raman Scattering Intensity. Nanomaterials, 2020, 10, 519.	1.9	4
49	Film wrap nanoparticle system with the graphene nano-spacer for SERS detection. Optics Express, 2021, 29, 1360.	1.7	3
50	Effect of annealing time on the structural and ferromagnetic properties of the GaMnN thin films. Applied Physics A: Materials Science and Processing, 2014, 114, 1003-1007.	1.1	2
51	Impact of Nitrogen Pressure on the Structural, Morphologic and Magnetic Properties of the GaMnN Thin Films. Journal of Superconductivity and Novel Magnetism, 2013, 26, 3495-3499.	0.8	1
52	Favorable Nucleation Sites of the Au-Graphene Hybrid Layer for the Aligned ZnO Nanorods Synthesis. Journal of Nanoscience and Nanotechnology, 2016, 16, 8823-8828.	0.9	0