Sandy Wyllie-Echeverria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11623795/publications.pdf

Version: 2024-02-01

38 papers 2,406 citations

331259 21 h-index 35 g-index

38 all docs 38 docs citations

38 times ranked 2306 citing authors

#	Article	IF	Citations
1	Are migratory waterfowl vectors of seagrass pathogens?. Ecology and Evolution, 2020, 10, 2062-2073.	0.8	7
2	Oysters and Eelgrass: Potential Partners in a High pCO2 Ocean. Bulletin of the Ecological Society of America, 2018, 99, e01423.	0.2	1
3	Oysters and eelgrass: potential partners in a high <scp>pCO</scp> ₂ ocean. Ecology, 2018, 99, 1802-1814.	1.5	34
4	Algicidal and growth-inhibiting bacteria associated with seagrass and macroalgae beds in Puget Sound, WA, USA. Harmful Algae, 2017, 62, 136-147.	2.2	48
5	The Structure of Genetic Diversity in Eelgrass (Zostera marina L.) along the North Pacific and Bering Sea Coasts of Alaska. PLoS ONE, 2016, 11, e0152701.	1.1	17
6	Plant characteristics associated with widespread variation in eelgrass wasting disease. Diseases of Aquatic Organisms, 2016, 118, 159-168.	0.5	28
7	Functional, Phylogenetic and Host-Geographic Signatures of Labyrinthula spp. Provide for Putative Species Delimitation and a Global-Scale View of Seagrass Wasting Disease. Estuaries and Coasts, 2016, 39, 1403-1421.	1.0	39
8	Managing marine disease emergencies in an era of rapid change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150364.	1.8	109
9	Tending the meadows of the sea: A disturbance experiment based on traditional indigenous harvesting of Zostera marina L. (Zosteraceae) the southern region of Canada's west coast. Aquatic Botany, 2015,	0.8	10
	127, 26-34.		
10	127, 26-34. Emergency response for marine diseases. Science, 2015, 347, 1210-1210.	6.0	8
10		6.0	8
	Emergency response for marine diseases. Science, 2015, 347, 1210-1210.		8 4 17
11	Emergency response for marine diseases. Science, 2015, 347, 1210-1210. Tolerance of Phyllospadix scouleri seedlings to hydrogen sulfide. Aquatic Botany, 2015, 123, 72-75. Microtopography promotes coexistence of an invasive seagrass and its native congener. Biological	0.8	4
11 12	Emergency response for marine diseases. Science, 2015, 347, 1210-1210. Tolerance of Phyllospadix scouleri seedlings to hydrogen sulfide. Aquatic Botany, 2015, 123, 72-75. Microtopography promotes coexistence of an invasive seagrass and its native congener. Biological Invasions, 2015, 17, 381-395. Ecological effect of a nonnative seagrass spreading in the Northeast Pacific: A review of Zostera	0.8	17
11 12 13	Emergency response for marine diseases. Science, 2015, 347, 1210-1210. Tolerance of Phyllospadix scouleri seedlings to hydrogen sulfide. Aquatic Botany, 2015, 123, 72-75. Microtopography promotes coexistence of an invasive seagrass and its native congener. Biological Invasions, 2015, 17, 381-395. Ecological effect of a nonnative seagrass spreading in the Northeast Pacific: A review of Zostera japonica. Ocean and Coastal Management, 2014, 102, 375-382. Conservation of Eelgrass (Zostera marina) Genetic Diversity in a Mesocosm-Based Restoration	0.8 1.2 2.0	4 17 15
11 12 13	Emergency response for marine diseases. Science, 2015, 347, 1210-1210. Tolerance of Phyllospadix scouleri seedlings to hydrogen sulfide. Aquatic Botany, 2015, 123, 72-75. Microtopography promotes coexistence of an invasive seagrass and its native congener. Biological Invasions, 2015, 17, 381-395. Ecological effect of a nonnative seagrass spreading in the Northeast Pacific: A review of Zostera japonica. Ocean and Coastal Management, 2014, 102, 375-382. Conservation of Eelgrass (Zostera marina) Genetic Diversity in a Mesocosm-Based Restoration Experiment. PLoS ONE, 2014, 9, e89316. Host demography influences the prevalence and severity of eelgrass wasting disease. Diseases of	0.8 1.2 2.0 1.1	4 17 15 9
11 12 13 14	Emergency response for marine diseases. Science, 2015, 347, 1210-1210. Tolerance of Phyllospadix scouleri seedlings to hydrogen sulfide. Aquatic Botany, 2015, 123, 72-75. Microtopography promotes coexistence of an invasive seagrass and its native congener. Biological Invasions, 2015, 17, 381-395. Ecological effect of a nonnative seagrass spreading in the Northeast Pacific: A review of Zostera japonica. Ocean and Coastal Management, 2014, 102, 375-382. Conservation of Eelgrass (Zostera marina) Genetic Diversity in a Mesocosm-Based Restoration Experiment. PLoS ONE, 2014, 9, e89316. Host demography influences the prevalence and severity of eelgrass wasting disease. Diseases of Aquatic Organisms, 2014, 108, 165-175.	0.8 1.2 2.0 1.1	4 17 15 9

#	Article	IF	Citations
19	Population Structure and Genetic Diversity among Eelgrass (Zostera marina) Beds and Depths in San Francisco Bay. Journal of Heredity, 2012, 103, 533-546.	1.0	29
20	Posidonia oceanica and Zostera marina as Potential Biomarkers of Heavy Metal Contamination in Coastal Systems. , 2012, , .		7
21	Genetic Structure and Diversity of Zostera marina (Eelgrass) in the San Juan Archipelago, Washington, USA. Estuaries and Coasts, 2010, 33, 811-827.	1.0	18
22	Distribution and Performance of the Nonnative Seagrass Zostera japonica Across a Tidal Height Gradient on Shaw Island, Washington. Pacific Science, 2010, 64, 187-198.	0.2	11
23	Field and Remote-Sensing Assessment of Mangrove Forests and Seagrass Beds in the Northwestern Part of the United Arab Emirates. Journal of Coastal Research, 2009, 251, 48-56.	0.1	44
24	The potential role of climate in the distribution and zonation of the introduced seagrass Zostera japonica in North America. Aquatic Botany, 2008, 89, 297-302.	0.8	26
25	Do desiccation tolerances control the vertical distribution of intertidal seagrasses?. Aquatic Botany, 2007, 87, 161-166.	0.8	67
26	Seagrass Conservation Biology: An Interdisciplinary Science for Protection of the Seagrass Biome., 2007,, 595-623.		9
27	Mats of Beggiatoa bacteria reveal that organic pollution from lumber mills inhibits growth of Zostera marina. Marine Ecology, 2006, 27, 372-380.	0.4	24
28	Using light-permeable grating to mitigate impacts of residential floats on eelgrass Zostera marina L. in Puget Sound, Washington. Ecological Engineering, 2006, 28, 354-362.	1.6	11
29	Further Evidence for Seed Size Variation in the Genus Zostera: Exploratory Studies with Z. japonica and Z. asiatica. Aliso, 2006, 22, 243-247.	0.4	3
30	Buoy-deployed seeding: Demonstration of a new eelgrass (Zostera marina L.) planting method. Ecological Engineering, 2005, 25, 127-136.	1.6	64
31	North Atlantic phylogeography and large-scale population differentiation of the seagrass Zostera marina L Molecular Ecology, 2004, 13, 1923-1941.	2.0	277
32	In vitro experimental assessment of the grazing pressure of two gastropods on Zostera marina L. ephiphytic algae. Aquatic Botany, 2004, 78, 183-195.	0.8	32
33	The influence of burrowing thalassinid shrimps on the distribution of intertidal seagrasses in Willapa Bay, Washington, USA. Aquatic Botany, 2003, 77, 27-42.	0.8	74
34	The seagrass (Zostera marina [zosteraceae]) industry of Nova Scotia (1907–1960). Economic Botany, 1999, 53, 419-426.	0.8	24
35	Estimating basal area coverage of subtidal seagrass beds using underwater videography. Aquatic Botany, 1997, 58, 269-287.	0.8	62
36	Natural and human-induced disturbance of seagrasses. Environmental Conservation, 1996, 23, 17-27.	0.7	1,063

#	Article	IF	CITATIONS
37	Assessment of environmental suitability for growth of Zostera marina L. (eelgrass) in San Francisco Bay. Aquatic Botany, 1991, 39, 353-366.	0.8	84
38	Metabarcoding of environmental samples suggest wide distribution of eelgrass (Zostera marina) pathogens in the north Pacific. Metabarcoding and Metagenomics, 0, 5, .	0.0	5