Huseyin Sehitoglu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11623171/publications.pdf

Version: 2024-02-01

94381 110317 4,411 67 37 64 citations g-index h-index papers 69 69 69 2662 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evolving dislocation cores at Twin Boundaries: Theory of CRSS Elevation. International Journal of Plasticity, 2022, 148, 103141.	4.1	15
2	Functional fatigue of Ni50.3Ti25Hf24.7 – Heterogeneities and evolution of local transformation strains. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 696, 482-492.	2.6	14
3	A revisit to atomistic rationale for slip in shape memory alloys. Progress in Materials Science, 2017, 85, 1-42.	16.0	97
4	Localisation of plastic strain at the microstructurlal level in Hastelloy X subjected to monotonic, fatigue, and creep loading: the role of grain boundaries and slip transmission. Materials at High Temperatures, 2016, 33, 384-400.	0.5	14
5	Recent advances in modeling fatigue cracks at microscale in the presence of high density coherent twin interfaces. Current Opinion in Solid State and Materials Science, 2016, 20, 140-150.	5.6	25
6	Infrared thermography videos of the elastocaloric effect for shape memory alloys NiTi and Ni 2 FeGa. Data in Brief, 2015, 5, 7-8.	0.5	1
7	NiTi superelasticity via atomistic simulations. Philosophical Magazine Letters, 2015, 95, 574-586.	0.5	37
8	Experimental Methodology for Studying Strain Heterogeneity with Microstructural Data from High Temperature Deformation. Experimental Mechanics, 2015, 55, 53-63.	1.1	19
9	Digital image correlation study of mechanical response of nickel superalloy Hastelloy X under thermal and mechanical cycling: Uniaxial and biaxial stress states. Journal of Strain Analysis for Engineering Design, 2014, 49, 233-243.	1.0	17
10	Investigation of thermal effects on fatigue crack closure using multiscale digital image correlation experiments. International Journal of Fatigue, 2014, 61, 10-20.	2.8	32
11	Predicting fatigue resistance of nano-twinned materials: Part II – Effective threshold stress intensity factor range. International Journal of Fatigue, 2014, 68, 292-301.	2.8	32
12	Slip transmission in bcc FeCr polycrystal. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 588, 308-317.	2.6	55
13	High resolution digital image correlation measurements of strain accumulation in fatigue crack growth. International Journal of Fatigue, 2013, 57, 140-150.	2.8	170
14	On the interactions between strain accumulation, microstructure, and fatigue crack behavior. International Journal of Fracture, 2013, 180, 223-241.	1.1	45
15	Plastic deformation of NiTi shape memory alloys. Acta Materialia, 2013, 61, 67-78.	3.8	139
16	Plastic strain localization and fatigue micro-crack formation in Hastelloy X. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 561, 507-519.	2.6	70
17	Role of Microstructure in Predicting Fatigue Performance. , 2012, , .		4
18	The Role of Slip Transmission on Plastic Strain accumulationacross Grain Boundaries. Procedia IUTAM, 2012, 4, 169-178.	1.2	18

#	Article	IF	CITATIONS
19	Energetics of residual dislocations associated with slip–twin and slip–GBs interactions. Materials Science & Sc	2.6	74
20	Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X. Journal of the Mechanics and Physics of Solids, 2012, 60, 1201-1220.	2.3	223
21	Superior fatigue crack growth resistance, irreversibility, and fatigue crack growth–microstructure relationship of nanocrystalline alloys. Acta Materialia, 2011, 59, 7340-7355.	3.8	62
22	Energy of slip transmission and nucleation at grain boundaries. Acta Materialia, 2011, 59, 283-296.	3.8	332
23	The role of grain boundaries on fatigue crack initiation $\hat{a} \in \text{``An energy approach. International Journal of Plasticity, 2011, 27, 801-821.}$	4.1	201
24	An energy-based microstructure model to account for fatigue scatter in polycrystals. Journal of the Mechanics and Physics of Solids, 2011, 59, 595-609.	2.3	95
25	Energy barriers associated with slip–twin interactions. Philosophical Magazine, 2011, 91, 1464-1488.	0.7	72
26	Grain boundary characterization and energetics of superalloys. Materials Science & Department of the Community of the Communi	2.6	85
27	The influence of orientation and aluminium content on the deformation mechanisms of Hadfield steel single crystals. International Journal of Materials Research, 2007, 98, 144-149.	0.1	17
28	Hysteresis and deformation mechanisms of transforming FeNiCoTi. Mechanics of Materials, 2006, 38, 538-550.	1.7	37
29	Guided self-assembly of metallic nanowires and channels. Applied Physics Letters, 2004, 84, 4669-4671.	1.5	65
30	Detwinning in NiTi alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 5-13.	1.1	95
31	Biaxial testing of nanoscale films on compliant substrates: Fatigue and fracture. Review of Scientific Instruments, 2002, 73, 2963-2970.	0.6	34
32	Micro and Macro Deformation of Single Crystal NiTi. Journal of Engineering Materials and Technology, Transactions of the ASME, 2002, 124, 238-245.	0.8	57
33	Three-Dimensional Elastic-Plastic Stress Analysis of Rolling Contact. Journal of Tribology, 2002, 124, 699-708.	1.0	76
34	Observations on Stress-Induced Transformations in NiTi Alloys. Solid Mechanics and Its Applications, 2002, , 103-109.	0.1	4
35	Deformation of NiTiCu shape memory single crystals in compression. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 477-489.	1.1	36
36	The effect of twinning and slip on the bauschinger effect of hadfield steel single crystals. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 695-706.	1.1	5

3

#	Article	IF	CITATIONS
37	The effect of twinning and slip on the bauschinger effect of hadfield steel single crystals. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 695-706.	1.1	79
38	Cyclic deformation behavior of single crystal NiTi. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 314, 67-74.	2.6	102
39	On the mechanical behavior of single crystal NiTi shape memory alloys and related polycrystalline phenomenon. Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 317, 85-92.	2.6	118
40	Fracture of precipitated NiTi shape memory alloys. International Journal of Fracture, 2001, 109, 189-207.	1.1	94
41	The role of intergranular constraint on the stress-induced martensitic transformation in textured polycrystalline NiTi. International Journal of Plasticity, 2000, 16, 1189-1214.	4.1	104
42	Stress-strain response of a cast 319-T6 aluminum under thermomechanical loading. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 139-151.	1.1	45
43	Constriction energy in the presence of a solute field. Journal of Applied Physics, 2000, 87, 2194-2203.	1.1	18
44	The Influence of Aging on Critical Transformation Stress Levels and Martensite Start Temperatures in NiTi: Part I—Aged Microstructure and Micro-Mechanical Modeling. Journal of Engineering Materials and Technology, Transactions of the ASME, 1999, 121, 19-27.	0.8	85
45	The Influence of Aging on Critical Transformation Stress Levels and Martensite Start Temperatures in NiTi: Part Il—Discussion of Experimental Results. Journal of Engineering Materials and Technology, Transactions of the ASME, 1999, 121, 28-37.	0.8	70
46	A model for rolling contact failure. Wear, 1999, 224, 38-49.	1.5	149
47	The role of texture in tension–compression asymmetry in polycrystalline NiTi. International Journal of Plasticity, 1999, 15, 69-92.	4.1	292
48	Modeling high-temperature stress-strain behavior of cast aluminum alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 133-146.	1.1	56
49	Stress-state effects on the stress-induced martensitic transformation of carburized 4320 steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 427-437.	1.1	12
50	A Methodology for Predicting Variability in Microstructurally Short Fatigue Crack Growth Rates. Journal of Engineering Materials and Technology, Transactions of the ASME, 1997, 119, 171-179.	0.8	20
51	Contact of crack surfaces during fatigue: Part 1. formulation of the model. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997, 28, 2263-2275.	1.1	15
52	Contact of crack surfaces during fatigue: Part 2. Simulations. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997, 28, 2277-2289.	1.1	15
53	Plastic zones and fatigue-crack closure under plane-strain double slip. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 3491-3502.	1.1	23
54	Effect of stress state on the stress-induced martensitic transformation in polycrystalline Ni-Ti alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 3066-3073.	1.1	99

#	Article	IF	CITATIONS
55	Rolling contact stress analysis with the application of a new plasticity model. Wear, 1996, 191, 35-44.	1.5	59
56	Comments on the Mroz multiple surface type plasticity models. International Journal of Solids and Structures, 1996, 33, 1053-1068.	1.3	40
57	Recent advances in fatigue crack growth modeling. International Journal of Fracture, 1996, 80, 165-192.	1.1	65
58	Thermal and Thermomechanical Fatigue of Structural Alloys. , 1996, , 527-556.		36
59	Cyclic ratchetting of 1070 steel under multiaxial stress states. International Journal of Plasticity, 1994, 10, 579-608.	4.1	157
60	Multiaxial cyclic ratchetting under multiple step loading. International Journal of Plasticity, 1994, 10, 849-870.	4.1	93
61	An Analytical Approach to Elastic-Plastic Stress Analysis of Rolling Contact. Journal of Tribology, 1994, 116, 577-587.	1.0	76
62	Thermal-Induced Transformation of Retained Austenite in the Simulated Case of a Carburized Steel. Journal of Engineering Materials and Technology, Transactions of the ASME, 1993, 115, 83-88.	0.8	1
63	Thermomechanical fatigue of particulate-reinforced aluminum 2xxx-T4. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1991, 22, 697-707.	1.4	29
64	Thermo-Mechanical Fatigue of Mar-M247: Part 1â€"Experiments. Journal of Engineering Materials and Technology, Transactions of the ASME, 1990, 112, 68-79.	0.8	63
65	Changes in State Variables at Elevated Temperatures. Journal of Engineering Materials and Technology, Transactions of the ASME, 1989, 111, 192-203.	0.8	10
66	Material Behavior Under Thermal Loading. Journal of Pressure Vessel Technology, Transactions of the ASME, 1986, 108, 113-119.	0.4	8
67	Effects of diffusion and primary creep on intergranular cavitation at high temperatures. International Journal of Fracture, 0, , .	1.1	O