## Rahul D Kamble

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11621621/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Mild and efficient ammonium chloride catalyzed Greener synthesis of tetrahydro-β-carboline. Current<br>Research in Green and Sustainable Chemistry, 2022, 5, 100268.                                                     | 5.6 | 3         |
| 2  | Metal-free efficient thiolation of C(sp2) functionalization via in situ-generated NHTS for the synthesis<br>of novel sulfenylated 2-aminothiazole and imidazothiazole. New Journal of Chemistry, 2021, 45,<br>4632-4637. | 2.8 | 3         |
| 3  | Design, synthesis and in silico study of pyridine based 1,3,4-oxadiazole embedded<br>hydrazinecarbothioamide derivatives as potent anti-tubercular agent. Computational Biology and<br>Chemistry, 2019, 80, 54-65.       | 2.3 | 24        |
| 4  | Metal-Free One-Pot Chemoselective Thiocyanation of Imidazothiazoles and 2-Aminothiazoles with in situ Generated N-Thiocyanatosuccinimide. Synlett, 2018, 29, 1902-1908.                                                  | 1.8 | 10        |
| 5  | Antidiabetic and allied biochemical roles of new chromeno-pyrano pyrimidine compounds: synthesis,<br>in vitro and in silico analysis. Medicinal Chemistry Research, 2017, 26, 805-818.                                   | 2.4 | 19        |
| 6  | Synthesis and molecular docking studies of a new series of<br>bipyrazol-yl-thiazol-ylidene-hydrazinecarbothioamide derivatives as potential antitubercular agents.<br>MedChemComm, 2016, 7, 1405-1420.                   | 3.4 | 11        |
| 7  | Synthesis and in silico investigation of thiazoles bearing pyrazoles derivatives as anti-inflammatory agents. Computational Biology and Chemistry, 2016, 61, 86-96.                                                      | 2.3 | 62        |
| 8  | A rapid, mild, and efficient method for C-5 iodination/thiocyanation of 2-aminothiazoles. Phosphorus,<br>Sulfur and Silicon and the Related Elements, 2016, 191, 1155-1159.                                              | 1.6 | 10        |
| 9  | Green synthesis and in silico investigation of dihydro-2H-benzo[1,3]oxazine derivatives as inhibitors of Mycobacterium tuberculosis. Medicinal Chemistry Research, 2015, 24, 1077-1088.                                  | 2.4 | 20        |
| 10 | Bleaching earth clay pH 12.5/PEG-400 catalytic system for synthesis of some novel α, β-unsaturated ketones (chalcones). Research on Chemical Intermediates, 2015, 41, 4673-4678.                                         | 2.7 | 4         |
| 11 | Bleaching earth clay (pH 12.5)/PEG-400: an efficient recyclable catalytic system for synthesis of 5,6,7,8-tetrahydroquinoline-3-carbonitrile derivatives. Research on Chemical Intermediates, 2015, 41, 7541-7551.       | 2.7 | 3         |
| 12 | Green method for synthesis of 3-[2-(substituted-phenyl)-2-oxo ethylidene]-1,3-dihydro-indol-2-one and their in vitro antimicrobial activity. Research on Chemical Intermediates, 2015, 41, 2953-2959.                    | 2.7 | 5         |
| 13 | An efficient synthesis of isoxazoline libraries of thiophene analogs and its antimycobacterial investigation. Medicinal Chemistry Research, 2014, 23, 4455-4463.                                                         | 2.4 | 21        |
| 14 | Bleaching earth clay (pH 12.5): a green catalyst for rapid synthesis of pyranopyrazole derivatives via a tandem three-component reaction. Research on Chemical Intermediates, 2013, 39, 3859-3866.                       | 2.7 | 20        |
| 15 | Green approach towards synthesis of substituted<br>pyrazole-1,4-dihydro,9-oxa,1,2,6,8-tetrazacyclopentano[b]naphthalene-5-one derivatives as                                                                             | 2.4 | 15        |