
Andrew M Liebhold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1162107/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global drivers of historical true fruit fly (Diptera: Tephritidae) invasions. Journal of Pest Science, 2023, 96, 345-357.	1.9	6
2	Climate change and invasions by nonnative bark and ambrosia beetles. , 2022, , 3-30.		14
3	Historical change in the outbreak dynamics of an invading forest insect. Biological Invasions, 2022, 24, 879-889.	1.2	7
4	Climate affects the outbreaks of a forest defoliator indirectly through its tree hosts. Oecologia, 2022, 198, 407-418.	0.9	9
5	Correction: Four priority areas to advance invasion science in the face of rapid environmental change. Environmental Reviews, 2022, 30, 174-174.	2.1	1
6	Moths and butterflies on alien shores: Global biogeography of nonâ€native Lepidoptera. Journal of Biogeography, 2022, 49, 1455-1468.	1.4	9
7	Dendrochronological Reconstruction of the Historical Invasion of Balsam Woolly Adelgid, Adelges piceae, Feeding on Canaan Fir, Abies balsamea subsp. phanerolepis in the Central Appalachian Mountains. Castanea, 2022, 87, .	0.2	О
8	Variable effects of forest diversity on invasions by non-native insects and pathogens. Biodiversity and Conservation, 2022, 31, 2575-2586.	1.2	5
9	Aggressive tree killer or natural thinning agent? Assessing the impacts of a globally important forest insect. Forest Ecology and Management, 2021, 483, 118728.	1.4	9
10	Combining multiple tactics over time for costâ€effective eradication of invading insect populations. Ecology Letters, 2021, 24, 279-287.	3.0	15
11	Probing the role of propagule pressure, stochasticity, and Allee effects on invasion success using experimental introductions of a biological control agent. Ecological Entomology, 2021, 46, 383-393.	1.1	7
12	Population dynamics of ash across the eastern USA following invasion by emerald ash borer. Forest Ecology and Management, 2021, 479, 118574.	1.4	15
13	Biological Invasions and International Trade: Managing a Moving Target. Review of Environmental Economics and Policy, 2021, 15, 180-190.	3.1	22
14	Sharp boundary formation and invasion between spatially adjacent periodical cicada broods. Journal of Theoretical Biology, 2021, 515, 110600.	0.8	3
15	Options for reducing uncertainty in impact classification for alien species. Ecosphere, 2021, 12, e03461.	1.0	16
16	Approaches for estimating benefits and costs of interventions in plant biosecurity across invasion phases. Ecological Applications, 2021, 31, e02319.	1.8	12
17	Alternative futures for global biological invasions. Sustainability Science, 2021, 16, 1637-1650.	2.5	25
18	Four priority areas to advance invasion science in the face of rapid environmental change. Environmental Reviews, 2021, 29, 119-141.	2.1	98

#	Article	IF	CITATIONS
19	Around the world in 500 years: Interâ€regional spread of alien species over recent centuries. Global Ecology and Biogeography, 2021, 30, 1621-1632.	2.7	29
20	Invasion disharmony in the global biogeography of native and nonâ€native beetle species. Diversity and Distributions, 2021, 27, 2050-2062.	1.9	17
21	Inoculative Releases and Natural Spread of the Fungal Pathogen <i>Entomophaga maimaiga </i> (Entomophthorales: Entomophthoraceae) into U.S. Populations of Gypsy Moth, <i>Lymantria dispar</i> (Lepidoptera: Erebidae). Environmental Entomology, 2021, 50, 1007-1015.	0.7	6
22	Mechanisms driving component <scp>Allee</scp> effects during invasions: using a biological control agent as model invader. Ecological Entomology, 2021, 46, 1205-1214.	1.1	2
23	Worldwide border interceptions provide a window into humanâ€mediated global insect movement. Ecological Applications, 2021, 31, e02412.	1.8	53
24	Predicting non-native insect impact: focusing on the trees to see the forest. Biological Invasions, 2021, 23, 3921-3936.	1.2	5
25	The Role of International Cooperation in Invasive Species Research. , 2021, , 293-303.		1
26	Early Intervention Strategies for Invasive Species Management: Connections Between Risk Assessment, Prevention Efforts, Eradication, and Other Rapid Responses. , 2021, , 111-131.		5
27	Projecting the continental accumulation of alien species through to 2050. Global Change Biology, 2021, 27, 970-982.	4.2	327
28	Hidden patterns of insect establishment risk revealed from two centuries of alien species discoveries. Science Advances, 2021, 7, eabj1012.	4.7	12
29	Comparing generalized and customized spread models for nonnative forest pests. Ecological Applications, 2020, 30, e01988.	1.8	5
30	Nonlinear time series analysis unravels underlying mechanisms of interspecific synchrony among foliageâ€feeding forest Lepidoptera species. Population Ecology, 2020, 62, 5-14.	0.7	5
31	Habitat fragmentation and eradication of invading insect herbivores. Journal of Applied Ecology, 2020, 57, 590-598.	1.9	13
32	Drivers of future alien species impacts: An expertâ€based assessment. Global Change Biology, 2020, 26, 4880-4893.	4.2	145
33	Warm temperatures increase population growth of a nonnative defoliator and inhibit demographic responses by parasitoids. Ecology, 2020, 101, e03156.	1.5	9
34	Outbreaking forest insect drives phase synchrony among sympatric folivores: Exploring potential mechanisms. Population Ecology, 2020, 62, 372-384.	0.7	3
35	Considering unseen arrivals in predictions of establishment risk based on border biosecurity interceptions. Ecological Applications, 2020, 30, e02194.	1.8	16
36	Temporal dynamics and drivers of landscapeâ€level spread by emerald ash borer. Journal of Applied Ecology, 2020, 57, 1020-1030.	1.9	14

#	Article	IF	CITATIONS
37	A global perspective on the climateâ€driven growth synchrony of neighbouring trees. Global Ecology and Biogeography, 2020, 29, 1114-1125.	2.7	19
38	Scientists' warning on invasive alien species. Biological Reviews, 2020, 95, 1511-1534.	4.7	928
39	Drivers of global Scolytinae invasion patterns. Ecological Applications, 2020, 30, e02103.	1.8	45
40	Return of the moth: rethinking the effect of climate on insect outbreaks. Oecologia, 2020, 192, 543-552.	0.9	32
41	Spatial patterns of discovery points and invasion hotspots of nonâ€native forest pests. Global Ecology and Biogeography, 2019, 28, 1749-1762.	2.7	12
42	Human-mediated dispersal in insects. Current Opinion in Insect Science, 2019, 35, 96-102.	2.2	85
43	Evolutionary history predicts highâ€impact invasions by herbivorous insects. Ecology and Evolution, 2019, 9, 12216-12230.	0.8	28
44	Relating Aerial Deposition of Entomophaga maimaiga Conidia (Zoopagomycota: Entomophthorales) to Mortality of Gypsy Moth (Lepidoptera: Erebidae) Larvae and Nearby Defoliation. Environmental Entomology, 2019, 48, 1214-1222.	0.7	13
45	Biomass losses resulting from insect and disease invasions in US forests. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17371-17376.	3.3	105
46	Population spatial synchrony enhanced by periodicity and low detuning with environmental forcing. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182828.	1.2	20
47	Quantifying spatio-temporal variation of invasion spread. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182294.	1.2	10
48	Air pollution as an experimental probe of insect population dynamics. Journal of Animal Ecology, 2019, 88, 662-664.	1.3	6
49	Tree diversity regulates forest pest invasion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7382-7386.	3.3	73
50	Consequences of hybridization during invasion on establishment success. Theoretical Ecology, 2019, 12, 197-205.	0.4	13
51	A Hybrid Model for the Population Dynamics of Periodical Cicadas. Bulletin of Mathematical Biology, 2019, 81, 1122-1142.	0.9	10
52	Eradication and containment of non-native forest insects: successes and failures. Journal of Pest Science, 2019, 92, 83-91.	1.9	46
53	Regional patterns of declining butternut (Juglans cinerea L.) suggest site characteristics for restoration. Ecology and Evolution, 2018, 8, 546-559.	0.8	7
54	Global rise in emerging alien species results from increased accessibility of new source pools. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2264-E2273.	3.3	416

#	Article	IF	CITATIONS
55	Tracing the role of human civilization in the globalization of plant pathogens. ISME Journal, 2018, 12, 647-652.	4.4	77
56	Transient synchrony among populations of five foliageâ€feeding Lepidoptera. Journal of Animal Ecology, 2018, 87, 1058-1068.	1.3	11
57	Geographic variation in forest composition and precipitation predict the synchrony of forest insect outbreaks. Oikos, 2018, 127, 634-642.	1.2	7
58	Strategic Development of Tree Resistance Against Forest Pathogen and Insect Invasions in Defense-Free Space. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	31
59	Multiple-Lure Surveillance Trapping for Ips Bark Beetles, Monochamus Longhorn Beetles, and Halyomorpha halys (Hemiptera: Pentatomidae). Journal of Economic Entomology, 2018, 111, 2255-2263.	0.8	12
60	Disentangling the drivers of invasion spread in a vectorâ€borne tree disease. Journal of Animal Ecology, 2018, 87, 1512-1524.	1.3	10
61	Recurrent bridgehead effects accelerate global alien ant spread. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5486-5491.	3.3	85
62	Competition and Stragglers as Mediators of Developmental Synchrony in Periodical Cicadas. American Naturalist, 2018, 192, 479-489.	1.0	11
63	Plant diversity drives global patterns of insect invasions. Scientific Reports, 2018, 8, 12095.	1.6	50
64	Spatioâ€ŧemporal dynamics of a treeâ€killing beetle and its predator. Ecography, 2017, 40, 221-234.	2.1	13
65	Impact of Non-native Invertebrates and Pathogens on Market Forest Tree Resources. , 2017, , 103-117.		20
66	Depletion of heterogeneous source species pools predicts future invasion rates. Journal of Applied Ecology, 2017, 54, 1968-1977.	1.9	49
67	Effects of host abundance on larch budmoth outbreaks in the <scp>E</scp> uropean <scp>A</scp> lps. Agricultural and Forest Entomology, 2017, 19, 376-387.	0.7	20
68	Predicting the spread of all invasive forest pests in the United States. Ecology Letters, 2017, 20, 426-435.	3.0	58
69	No saturation in the accumulation of alien species worldwide. Nature Communications, 2017, 8, 14435.	5.8	1,543
70	Modification of a Pollen Trap Design To Capture Airborne Conidia of Entomophaga maimaiga and Detection of Conidia by Quantitative PCR. Applied and Environmental Microbiology, 2017, 83, .	1.4	7
71	Recent human history governs global ant invasion dynamics. Nature Ecology and Evolution, 2017, 1, 0184.	3.4	112
72	The geography of spatial synchrony. Ecology Letters, 2017, 20, 801-814.	3.0	116

#	Article	IF	CITATIONS
73	Biotic resistance to exotic invasions: its role in forest ecosystems, confounding artifacts, and future directions. Biological Invasions, 2017, 19, 3287-3299.	1.2	48
74	Invasion Science: A Horizon Scan of Emerging Challenges and Opportunities. Trends in Ecology and Evolution, 2017, 32, 464-474.	4.2	312
75	A decade of emerald ash borer effects on regional woodpecker and nuthatch populations. Biological Invasions, 2017, 19, 2029-2037.	1.2	10
76	Longâ€distance dispersal of nonâ€native pine bark beetles from host resources. Ecological Entomology, 2017, 42, 173-183.	1.1	20
77	Invasion Science: Looking Forward Rather Than Revisiting Old Ground – A Reply to Zenni et al Trends in Ecology and Evolution, 2017, 32, 809-810.	4.2	3
78	Biological invasions in forest ecosystems. Biological Invasions, 2017, 19, 3437-3458.	1.2	161
79	Elevational range shifts in four mountain ungulate species from the <scp>S</scp> wiss <scp>A</scp> lps. Ecosphere, 2017, 8, e01761.	1.0	44
80	Ecology of forest insect invasions. Biological Invasions, 2017, 19, 3141-3159.	1.2	188
81	Regional assessment of emerald ash borer, Agrilus planipennis, impacts in forests of the Eastern United States. Biological Invasions, 2017, 19, 703-711.	1.2	37
82	Predicting <scp>N</scp> orth <scp>A</scp> merican <scp>S</scp> colytinae invasions in the <scp>S</scp> outhern <scp>H</scp> emisphere. Ecological Applications, 2017, 27, 66-77.	1.8	39
83	Predicting costs of alien species surveillance across varying transportation networks. Journal of Applied Ecology, 2017, 54, 225-233.	1.9	8
84	Biological invasions in forest ecosystems: a global problem requiring international and multidisciplinary integration. Biological Invasions, 2017, 19, 3073-3077.	1.2	17
85	The Legacy of Charles Marlatt and Efforts to Limit Plant Pest Invasions. American Entomologist, 2016, 62, 218-227.	0.1	13
86	Biological invasion hotspots: a traitâ€based perspective reveals new subâ€continental patterns. Ecography, 2016, 39, 961-969.	2.1	45
87	Nonnative forest insects and pathogens in the United States: Impacts and policy options. Ecological Applications, 2016, 26, 1437-1455.	1.8	289
88	European gypsy moth (Lymantria dispar dispar L.) completes development and defoliates exotic radiata pine plantations in Spain. New Zealand Journal of Forestry Science, 2016, 46, .	0.8	16
89	A dynamical model for bark beetle outbreaks. Journal of Theoretical Biology, 2016, 407, 25-37.	0.8	13
90	Evaluating methods to quantify spatial variation in the velocity of biological invasions. Ecography, 2016, 39, 409-418.	2.1	14

#	Article	IF	CITATIONS
91	Temporally increasing spatial synchrony of North American temperature and bird populations. Nature Climate Change, 2016, 6, 614-617.	8.1	91
92	Clobal compositional variation among native and non-native regional insect assemblages emphasizes the importance of pathways. Biological Invasions, 2016, 18, 893-905.	1.2	63
93	Invasive forest defoliator contributes to the impending downward trend of oak dominance in eastern North America. Forestry, 2016, 89, 284-289.	1.2	43
94	Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200Âyears. Biological Invasions, 2016, 18, 907-920.	1.2	114
95	Eradication of Invading Insect Populations: From Concepts to Applications. Annual Review of Entomology, 2016, 61, 335-352.	5.7	144
96	Benefits of invasion prevention: Effect of time lags, spread rates, and damage persistence. Ecological Economics, 2015, 116, 146-153.	2.9	66
97	Region-specific patterns and drivers of macroscale forest plant invasions. Diversity and Distributions, 2015, 21, 1181-1192.	1.9	72
98	Comparison of insect invasions in North America, Japan and their Islands. Biological Invasions, 2015, 17, 3049-3061.	1.2	50
99	Invasions by two non-native insects alter regional forest species composition and successional trajectories. Forest Ecology and Management, 2015, 341, 67-74.	1.4	52
100	Tree-ring evidence for the historical absence of cyclic larch budmoth outbreaks in the Tatra Mountains. Trees - Structure and Function, 2015, 29, 809-814.	0.9	16
101	Temporal variation in the synchrony of weather and its consequences for spatiotemporal population dynamics. Ecology, 2015, 96, 2935-2946.	1.5	38
102	Designing efficient surveys: spatial arrangement of sample points for detection of invasive species. Biological Invasions, 2015, 17, 445-459.	1.2	43
103	Can entomophagous nematodes slow the spread of invasive pest populations? The case study of Beddingia siricidicola released for the management of Sirex noctilio. Journal of Pest Science, 2014, 87, 551-557.	1.9	10
104	Responses to "Clear, Present, Significant, & Imminent Danger: Questions for the California Light Brown Apple Moth (Epiphyas postvittana) Technical Working Group― American Entomologist, 2014, 60, 244-248.	0.1	5
105	Impact of <i>Entomophaga maimaiga</i> (Entomophthorales: Entomophthoraceae) on Outbreak Gypsy Moth Populations (Lepidoptera: Erebidae): The Role of Weather. Environmental Entomology, 2014, 43, 632-641.	0.7	34
106	European springtime temperature synchronises ibex horn growth across the eastern Swiss Alps. Ecology Letters, 2014, 17, 303-313.	3.0	36
107	Temperature explains variable spread rates of the invasive woodwasp Sirex noctilio in the Southern Hemisphere. Biological Invasions, 2014, 16, 329-339.	1.2	61
108	Dendrochronological reconstruction of the epicentre and early spread of emerald ash borer in <scp>N</scp> orth <scp>A</scp> merica. Diversity and Distributions, 2014, 20, 847-858.	1.9	202

#	Article	IF	CITATIONS
109	Placing unprecedented recent fir growth in a Europeanâ€wide and Holoceneâ€long context. Frontiers in Ecology and the Environment, 2014, 12, 100-106.	1.9	90
110	Supraoptimal temperatures influence the range dynamics of a nonâ€native insect. Diversity and Distributions, 2014, 20, 813-823.	1.9	43
111	Invasion spread of Operophtera brumata in northeastern United States and hybridization with O. bruceata. Biological Invasions, 2014, 16, 2263-2272.	1.2	28
112	Predicting how altering propagule pressure changes establishment rates of biological invaders across species pools. Ecology, 2014, 95, 594-601.	1.5	102
113	Effects of the emerald ash borer invasion on four species of birds. Biological Invasions, 2013, 15, 2095-2103.	1.2	35
114	Using delimiting surveys to characterize the spatiotemporal dynamics facilitates the management of an invasive nonâ€native insect. Population Ecology, 2013, 55, 545-555.	0.7	14
115	Avian Predation Pressure as a Potential Driver of Periodical Cicada Cycle Length. American Naturalist, 2013, 181, 145-149.	1.0	23
116	The Relationship Between Trees and Human Health. American Journal of Preventive Medicine, 2013, 44, 139-145.	1.6	325
117	One world, many pathogens!. New Phytologist, 2013, 197, 9-10.	3.5	12
118	Long-term shifts in the cyclicity of outbreaks of a forest-defoliating insect. Oecologia, 2013, 172, 141-151.	0.9	49
119	Changes in the regional abundance of hemlock associated with the invasion of hemlock woolly adelgid (Adelges tsugae Annand). Biological Invasions, 2013, 15, 2667-2679.	1.2	18
120	Geographical variation in the spatial synchrony of a forest-defoliating insect: isolation of environmental and spatial drivers. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122373.	1.2	60
121	Emergent fungal entomopathogen does not alter density dependence in a viral competitor. Ecology, 2013, 94, 1217-1222.	1.5	31
122	A highly aggregated geographical distribution of forest pest invasions in the <scp>USA</scp> . Diversity and Distributions, 2013, 19, 1208-1216.	1.9	145
123	Bioeconomic synergy between tactics for insect eradication in the presence of Allee effects. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2807-2815.	1.2	45
124	Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Frontiers in Ecology and the Environment, 2012, 10, 135-143.	1.9	479
125	Forest pest management in a changing world. International Journal of Pest Management, 2012, 58, 289-295.	0.9	55
126	Elevational gradient in the cyclicity of a forestâ€defoliating insect. Population Ecology, 2012, 54, 239-250.	0.7	18

#	Article	IF	CITATIONS
127	Optimal surveillance and eradication of invasive species in heterogeneous landscapes. Ecology Letters, 2012, 15, 803-812.	3.0	145
128	Economic Impacts of Non-Native Forest Insects in the Continental United States. PLoS ONE, 2011, 6, e24587.	1.1	465
129	Exploiting Allee effects for managing biological invasions. Ecology Letters, 2011, 14, 615-624.	3.0	218
130	Subcontinental impacts of an invasive tree disease on forest structure and dynamics. Journal of Ecology, 2011, 99, 532-541.	1.9	36
131	Influence of foraging behavior and host spatial distribution on the localized spread of the emerald ash borer, <i>Agrilus planipennis</i> . Population Ecology, 2011, 53, 271-285.	0.7	48
132	The influence of satellite populations of emerald ash borer on projected economic costs in U.S. communities, 2010–2020. Journal of Environmental Management, 2011, 92, 2170-2181.	3.8	68
133	Simulating the effectiveness of three potential management options to slow the spread of emerald ash borer (Agrilus planipennis) populations in localized outlier sites. Canadian Journal of Forest Research, 2011, 41, 254-264.	0.8	54
134	Avian predators are less abundant during periodical cicada emergences, but why?. Ecology, 2011, 92, 784-790.	1.5	2
135	Changes in ash tree demography associated with emerald ash borer invasion, indicated by regional forest inventory data from the Great Lakes States. Canadian Journal of Forest Research, 2011, 41, 2165-2175.	0.8	48
136	Effects of Gypsy Moth Outbreaks on North American Woodpeckers. Condor, 2011, 113, 352-361.	0.7	13
137	Cost of potential emerald ash borer damage in U.S. communities, 2009–2019. Ecological Economics, 2010, 69, 569-578.	2.9	357
138	A spatial-dynamic value transfer model of economic losses from a biological invasion. Ecological Economics, 2010, 70, 86-95.	2.9	19
139	Comparing methods for measuring the rate of spread of invading populations. Ecography, 2010, 33, 809-817.	2.1	38
140	Climatic warming disrupts recurrent Alpine insect outbreaks. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20576-20581.	3.3	125
141	Response to Carey (2010). American Entomologist, 2010, 56, 164-169.	0.1	7
142	Geographic variation in North American gypsy moth cycles: subharmonics, generalist predators, and spatial coupling. Ecology, 2010, 91, 106-118.	1.5	63
143	Historical Accumulation of Nonindigenous Forest Pests in the Continental United States. BioScience, 2010, 60, 886-897.	2.2	377
144	Spatial synchrony propagates through a forest food web via consumer–resource interactions. Ecology, 2009, 90, 2974-2983.	1.5	54

#	Article	IF	CITATIONS
145	Gypsy moth (Lepidoptera: Lymantriidae) in Central Asia. American Entomologist, 2009, 55, 258-265.	0.1	15
146	The role of Allee effects in gypsy moth, <i>Lymantria dispar</i> (L.), invasions. Population Ecology, 2009, 51, 373-384.	0.7	92
147	The evidence for Allee effects. Population Ecology, 2009, 51, 341-354.	0.7	390
148	Spatially implicit approaches to understand the manipulation of mating success for insect invasion management. Population Ecology, 2009, 51, 427-444.	0.7	44
149	Mateâ€location failure, the Allee effect, and the establishment of invading populations. Population Ecology, 2009, 51, 337-340.	0.7	26
150	Spatial analysis of harmonic oscillation of gypsy moth outbreak intensity. Oecologia, 2009, 159, 249-256.	0.9	47
151	Anisotropic spread of hemlock woolly adelgid in the eastern United States. Biological Invasions, 2009, 11, 2341-2350.	1.2	70
152	Dispersal of the emerald ash borer, <i>Agrilus planipennis</i> , in newly olonized sites. Agricultural and Forest Entomology, 2009, 11, 421-424.	0.7	90
153	Economic Impacts of Invasive Species in Forests. Annals of the New York Academy of Sciences, 2009, 1162, 18-38.	1.8	221
154	Three centuries of insect outbreaks across the European Alps. New Phytologist, 2009, 182, 929-941.	3.5	97
155	Dispersal polymorphism in an invasive forest pest affects its ability to establish. , 2009, 19, 1935-1943.		19
156	Population Ecology of Managing Insect Invasions. , 2009, , 33-45.		0
157	Transient synchronization following invasion: revisiting Moran's model and a case study. Population Ecology, 2008, 50, 379-389.	0.7	27
158	An intercontinental comparison of the dynamic behavior of mast seeding communities. Population Ecology, 2008, 50, 329-342.	0.7	54
159	Population Ecology of Insect Invasions and Their Management. Annual Review of Entomology, 2008, 53, 387-408.	5.7	507
160	Inference of adult female dispersal from the distribution of gypsy moth egg masses in a Japanese city. Agricultural and Forest Entomology, 2008, 10, 69-73.	0.7	15
161	Dispersion in time and space affect mating success and Allee effects in invading gypsy moth populations. Journal of Animal Ecology, 2008, 77, 966-973.	1.3	62
162	To sample or eradicate? A cost minimization model for monitoring and managing an invasive species. Journal of Applied Ecology, 2008, 45, 1134-1142.	1.9	121

#	Article	IF	CITATIONS
163	Spread of beech bark disease in the eastern United States and its relationship to regional forest composition. Canadian Journal of Forest Research, 2007, 37, 726-736.	0.8	119
164	1200 years of regular outbreaks in alpine insects. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 671-679.	1.2	173
165	Variation in developmental time affects mating success and Allee effects. Oikos, 2007, 116, 1227-1237.	1.2	32
166	Invasion speed is affected by geographical variation in the strength of Allee effects. Ecology Letters, 2007, 10, 36-43.	3.0	165
167	Comparison of methods for estimating the spread of a non-indigenous species. Journal of Biogeography, 2007, 34, 305-312.	1.4	83
168	Variation in developmental time affects mating success and Allee effects. , 2007, 116, 1227.		1
169	The ecology of forest insect invasions and advances in their management. Canadian Journal of Forest Research, 2006, 36, 263-268.	0.8	128
170	Geographical variation in the periodicity of gypsy moth outbreaks. Ecography, 2006, 29, 367-374.	2.1	71
171	Contour Mapping and Number of Point Observations. Journal of Economic Entomology, 2006, 99, 599-600.	0.8	5
172	Allee effects and pulsed invasion by the gypsy moth. Nature, 2006, 444, 361-363.	13.7	218
173	Interceptions of Nonindigenous Plant Pests at US Ports of Entry and Border Crossings Over a 17-year Period. Biological Invasions, 2006, 8, 611-630.	1.2	259
174	Landscape mosaic induces traveling waves of insect outbreaks. Oecologia, 2006, 148, 51-60.	0.9	32
175	Geographic variation in densityâ€dependent dynamics impacts the synchronizing effect of dispersal and regional stochasticity. Population Ecology, 2006, 48, 131-138.	0.7	59
176	Growth of newly established alien populations: comparison of North American gypsy moth colonies with invasion theory. Population Ecology, 2006, 48, 253-262.	0.7	71
177	Airline Baggage as a Pathway for Alien Insect Species Invading the United States. American Entomologist, 2006, 52, 48-54.	0.1	127
178	Forest type affects predation on gypsy moth pupae. Agricultural and Forest Entomology, 2005, 7, 179-185.	0.7	21
179	Circumpolar variation in periodicity and synchrony among gypsy moth populations. Journal of Animal Ecology, 2005, 74, 882-892.	1.3	94
180	Are bark beetle outbreaks less synchronous than forest Lepidoptera outbreaks?. Oecologia, 2005, 146, 365-372.	0.9	38

#	Article	IF	CITATIONS
181	EFFECTS OF PERIODICAL CICADA EMERGENCES ON ABUNDANCE AND SYNCHRONY OF AVIAN POPULATIONS. Ecology, 2005, 86, 1873-1882.	1.5	67
182	Area-Wide Analysis of Hardwood Defoliator Effects on Tree Conditions in the Allegheny Plateau. Northern Journal of Applied Forestry, 2004, 21, 31-39.	0.5	17
183	Population synchrony within and among Lepidoptera species in relation to weather, phylogeny, and larval phenology. Ecological Entomology, 2004, 29, 96-105.	1.1	49
184	Landscape geometry and travelling waves in the larch budmoth. Ecology Letters, 2004, 7, 967-974.	3.0	87
185	Within-population spatial synchrony in mast seeding of North American oaks. Oikos, 2004, 104, 156-164.	1.2	92
186	Interspecific synchrony among foliage-feeding forest Lepidoptera species and the potential role of generalist predators as synchronizing agents. Oikos, 2004, 107, 462-470.	1.2	42
187	Effects of alternative prey on predation by small mammals on gypsy moth pupae. Population Ecology, 2004, 46, 171.	0.7	51
188	Spatial Synchrony in Population Dynamics. Annual Review of Ecology, Evolution, and Systematics, 2004, 35, 467-490.	3.8	749
189	Using thinning as a management tool for gypsy moth: the influence on small mammal abundance. Forest Ecology and Management, 2004, 192, 349-359.	1.4	18
190	Oak mast seeding as a direct cause of gypsy moth outbreaks?. Population Ecology, 2003, 45, 160-161.	0.7	0
191	The Allee effect, stochastic dynamics and the eradication of alien species. Ecology Letters, 2003, 6, 133-140.	3.0	272
192	Canopy herbivore community structure: large-scale geographical variation and relation to forest composition. Ecological Entomology, 2003, 28, 278-290.	1.1	14
193	Regional impacts of periodical cicadas on oak radial increment. Canadian Journal of Forest Research, 2003, 33, 1084-1089.	0.8	23
194	Evaluation of Preventive Treatments in Low-Density Gypsy Moth Populations Using Pheromone Traps. Journal of Economic Entomology, 2002, 95, 1205-1215.	0.8	45
195	Waves of Larch Budmoth Outbreaks in the European Alps. Science, 2002, 298, 1020-1023.	6.0	176
196	SPATIAL SYNCHRONY IN FOREST INSECT OUTBREAKS: ROLES OF REGIONAL STOCHASTICITY AND DISPERSAL. Ecology, 2002, 83, 3120-3129.	1.5	250
197	Integrating the statistical analysis of spatial data in ecology. Ecography, 2002, 25, 553-557.	2.1	125
198	Illustrations and guidelines for selecting statistical methods for quantifying spatial pattern in ecological data. Ecography, 2002, 25, 578-600.	2.1	355

#	Article	IF	CITATIONS
199	Climate change and the outbreak ranges of two North American bark beetles. Agricultural and Forest Entomology, 2002, 4, 87-99.	0.7	175
200	A statistical evaluation of non-ergodic variogram estimators. Environmental and Ecological Statistics, 2002, 9, 89-110.	1.9	10
201	MEASURING AND TESTING FOR SPATIAL SYNCHRONY. Ecology, 2001, 82, 1668-1679.	1.5	161
202	SPATIAL SYNCHRONY OF SPRUCE BUDWORM OUTBREAKS IN EASTERN NORTH AMERICA. Ecology, 2000, 81, 2753-2766.	1.5	159
203	What causes outbreaks of the gypsy moth in North America?. Population Ecology, 2000, 42, 257-266.	0.7	156
204	Spatial scale and the detection of density dependence in spruce budworm outbreaks in eastern North America. Oecologia, 2000, 124, 544-552.	0.9	40
205	Effects of Climate Change on Forest Insect and Disease Outbreaks. Ecological Studies, 2000, , 455-494.	0.4	7
206	What affects the rate of gypsy moth (Lepidoptera: Lymantriidae) spread: winter temperature or forest susceptibility?. Agricultural and Forest Entomology, 1999, 1, 37-45.	0.7	41
207	MODEL OF SLOWING THE SPREAD OF GYPSY MOTH (LEPIDOPTERA: LYMANTRIIDAE) WITH A BARRIER ZONE. , 1998, 8, 1170-1179.		172
208	Forecasting Gypsy Moth (Lepidoptera: Lymantriidae) Defoliation with a Geographical Information System. Journal of Economic Entomology, 1998, 91, 464-472.	0.8	23
209	BIOECONOMICS OF MANAGING THE SPREAD OFEXOTIC PEST SPECIES WITH BARRIER ZONES. , 1998, 8, 833-845.		60
210	Bioeconomics of Managing the Spread of Exotic Pest Species with Barrier Zones. , 1998, 8, 833.		11
211	Optimizing the Use of Barrier Zones to Slow the Spread of Gypsy Moth (Lepidoptera: Lymantriidae) in North America. Journal of Economic Entomology, 1998, 91, 165-174.	0.8	60
212	Does Forest Thinning Affect Predation on Gypsy Moth (Lepidoptera: Lymantriidae) Larvae and Pupae?. Environmental Entomology, 1998, 27, 268-276.	0.7	33
213	Forest Type Affects Predation on Gypsy Moth (Lepidoptera: Lymantriidae) Pupae in Japan. Environmental Entomology, 1998, 27, 858-862.	0.7	27
214	Methods for Monitoring the Spread of Gypsy Moth (Lepidoptera: Lymantriidae) Populations in the Appalachian Mountains. Journal of Economic Entomology, 1997, 90, 1259-1266.	0.8	37
215	DETECTION OF DELAYED DENSITY DEPENDENCE: REPLY. Ecology, 1997, 78, 320-322.	1.5	10
216	Spatial Variation Ainong Counts of Gypsy Moths (Lepidoptera: Lymantriidae) in Pheromone-Baited Traps at Expanding Population Fronts. Environmental Entomology, 1996, 25, 1312-1320.	0.7	34

#	Article	IF	CITATIONS
217	Use of a Geographic Information System To Evaluate Regional Treatment Effects in a Gypsy Moth (Lepidoptera: Lymantriidae) Management Program. Journal of Economic Entomology, 1996, 89, 1192-1203.	0.8	16
218	Spread of Gypsy Moth (Lepidoptera: Lymantriidae) in the Central Appalachians: Comparison of Population Boundaries Obtained from Male Moth Capture, Egg Mass Counts, and Defoliation Records. Environmental Entomology, 1996, 25, 783-792.	0.7	37
219	Cyclicity and synchrony of historical outbreaks of the beech caterpillar,Quadricalcarifera punctatella (Motschulsky) in Japan. Researches on Population Ecology, 1996, 38, 87-94.	0.9	20
220	Interactions Among Gypsy Moths, White-footed Mice, and Acorns. Ecology, 1996, 77, 2332-2342.	1.5	270
221	Gypsy Moth (Lepidoptera: Lymantriidae) Spread in the Central Appalachians: Three Methods for Species Boundary Estimation. Environmental Entomology, 1995, 24, 1529-1538.	0.7	41
222	Model to Predict Gypsy Moth (Lepidoptera: Lymantriidae) Defoliation Using Kriging and Logistic Regression. Environmental Entomology, 1995, 24, 529-537.	0.7	25
223	Prediction of Gypsy Moth (Lepidoptera: Lymantriidae) Mating Success from Pheromone Trap Counts. Environmental Entomology, 1995, 24, 1239-1244.	0.7	63
224	Influence of Weather on the Synchrony of Gypsy Moth (Lepidoptera: Lymantriidae) Outbreaks in New England. Environmental Entomology, 1995, 24, 987-995.	0.7	84
225	Regional Correlation of Gypsy Moth (Lepidoptera: Lymantriidae) Defoliation with Counts of Egg Masses, Pupae, and Male Moths. Environmental Entomology, 1995, 24, 193-203.	0.7	34
226	FORECASTING GYPSY MOTH DEFOLIATION WITH A GEOGRAPHICAL INFORMATION SYSTEM. Insect Science, 1995, 2, 83-94.	1.5	1
227	Forecasting the spatial dynamics of gypsy moth outbreaks using cellular transition models. Landscape Ecology, 1995, 10, 177-189.	1.9	34
228	Invasion by Exotic Forest Pests: A Threat to Forest Ecosystems. Forest Science, 1995, 41, a0001-z0001.	0.5	209
229	Forest Defoliators and Climatic Change: Potential Changes in Spatial Distribution of Outbreaks of Western Spruce Budworm (Lepidoptera: Tortricidae) and Gypsy Moth (Lepidoptera: Lymantriidae). Environmental Entomology, 1995, 24, 1-9.	0.7	66
230	Herbivorous Insects and Global Change: Potential Changes in the Spatial Distribution of Forest Defoliator Outbreaks. Journal of Biogeography, 1995, 22, 665.	1.4	75
231	Detection of Delayed Density Dependence: Effects of Autocorrelation in an Exogenous Factor. Ecology, 1995, 76, 1005-1008.	1.5	57
232	Analytical Population Dynamics. American Entomologist, 1994, 40, 113-113.	0.1	0
233	Geostatistics and Geographic Information Systems in Applied Insect Ecology. Annual Review of Entomology, 1993, 38, 303-327.	5.7	333
234	Mesoscale Weather Data as Input to a Gypsy Moth (Lepidoptera: Lymantriidae) Phenology Model. Journal of Economic Entomology, 1993, 86, 838-844.	0.8	47

#	Article	IF	CITATIONS
235	Forecasting Defoliation Caused by the Gypsy Moth from Field Measurements. Environmental Entomology, 1993, 22, 26-32.	0.7	38
236	Geostatistical Model for Forecasting Spatial Dynamics of Defoliation Caused by the Gypsy Moth (Lepidoptera: Lymantriidae). Environmental Entomology, 1993, 22, 1066-1075.	0.7	48
237	Spatial Distribution and Hatch Times of Egg Masses of Gypsy Moth (Lepidoptera: Lymantriidae). Environmental Entomology, 1992, 21, 354-358.	0.7	5
238	Are North American Populations of Gypsy Moth (Lepidoptera: Lymantriidae) Bimodal?. Environmental Entomology, 1992, 21, 221-229.	0.7	16
239	Gypsy Moth Invasion in North America: A Quantitative Analysis. Journal of Biogeography, 1992, 19, 513.	1.4	238
240	Modeling Environment for Simulation of Gypsy Moth (Lepidoptera: Lymantriidae) Larval Phenology. Environmental Entomology, 1991, 20, 1516-1525.	0.7	46
241	Transmission Dynamics of a Nuclear Polyhedrosis Virus and Predicting Mortality in Gypsy Moth (Lepidoptera: Lymantriidae) Populations. Journal of Economic Entomology, 1991, 84, 423-430.	0.8	36
242	Evaluation of the Timed-Walk Method of Estimating Gypsy Moth (Lepidoptera: Lymantriidae) Egg Mass Densities. Journal of Economic Entomology, 1991, 84, 1774-1781.	0.8	9
243	Geostatistical Analysis of Gypsy Moth (Lepidoptera: Lymantriidae) Egg Mass Populations. Environmental Entomology, 1991, 20, 1407-1417.	0.7	61
244	Population Dynamics of Gypsy Moth in North America. Annual Review of Entomology, 1990, 35, 571-596.	5.7	358
245	Elevated Parasitism in Artificially Augmented Populations of Lymantria dispar (Lepidoptera:) Tj ETQq1 1 0.784314	rgBT /Ov	erlock 10 Tf.
246	Use of Multi-Dimensional Life Tables for Studying Insect Population Dynamics. Lecture Notes in Statistics, 1989, , 360-369.	0.1	3
247	Statistical Methods for Estimating Ratios and Products in Ecological Studies. Environmental Entomology, 1988, 17, 572-580.	0.7	32
248	Techniques for Estimating the Density of Late-Instar Gypsy Moth, Lymantria dispar (Lepidoptera:) Tj ETQq0 0 0 rg Entomology, 1988, 17, 381-384.	BT /Overlo 0.7	ock 10 Tf 50 3 32
249	Estimating Oak Leaf Area Index and Gypsy Moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), Defoliation Using Canopy Photographs. Environmental Entomology, 1988, 17, 560-566.	0.7	9
250	Estimating the Density of Larval Gypsy Moth, Lymantria dispar (Lepidoptera: Lymantriidae), Using Frass Drop and Frass Production Measurements: Sources of Variation and Sample Size. Environmental Entomology, 1988, 17, 385-390.	0.7	26
251	Effect of Burlap Bands on Between-tree Movement of Late-instar Gypsy Moth, Lymantria dispar (Lepidoptera: Lymantriidae). Environmental Entomology, 1986, 15, 373-379.	0.7	44
252	LARVAL COLORATION OF HYBRIDS BETWEEN CHORISTONEURA OCCIDENTALIS AND C. RETINIANA (LEPIDOPTERA: TORTRICIDAE). Canadian Entomologist, 1986, 118, 857-860.	0.4	2

#	Article	IF	CITATIONS
253	EFFECTS OF ATTRACTANT COMPOSITION AND RELEASE RATE ON ATTRACTION OF MALE <i>CHORISTONEURA RETINIANA</i> , <i>C. OCCIDENTALS</i> , AND <i>C. CARNANA</i> (LEPIDOPTERA : TORTRICIDAE). Canadian Entomologist, 1985, 117, 447-457.	0.4	3
254	POST-DIAPAUSE DEVELOPMENT OF SYMPATRIC <i>CHORISTONEURA OCCIDENTALIS</i> AND <i>C. RETINIANA</i> (LEPIDOPTERA: TORTRICIDAE) AND THEIR HYBRIDS. Canadian Entomologist, 1985, 117, 1479-1488.	0.4	10
255	HOST ASSOCIATIONS, PHENOTYPIC VARIATION, AND MATING COMPATIBILITY OF <i>CHORISTONEURA OCCIDENTALS</i> AND <i>C. RETINIANA</i> (LEPIDOPTERA: TORTRICIDAE) POPULATIONS IN SOUTH-CENTRAL OREGON. Canadian Entomologist, 1984, 116, 813-826.	0.4	16
256	EVALUATION OF CROSS-ATTRACTION BETWEEN SYMPATRIC <i>CHORISTONEURA OCCIDENTALIS</i> AND <i>C. RETINIANA</i> (LEPIDOPTERA: TORTRICIDAE) POPULATIONS IN SOUTH-CENTRAL OREGON. Canadian Entomologist, 1984, 116, 827-840.	0.4	8
257	EFFECT OF TEMPORAL FACTORS ON REPRODUCTIVE ISOLATION BETWEEN <i>CHORISTONEURA OCCIDENTALIS</i> AND <i>C. RETINIANA</i> (LEPIDOPTERA: TORTRICIDAE). Canadian Entomologist, 1984, 116, 991-1005.	0.4	11
258	Effect of foliage proximity on attraction ofChoristoneura occidentalis andC. retiniana (Lepidoptera:) Tj ETQqO OC) rgBT /Ονε	erlgck 10 Tf 5
259	EFFECTS OF TEMPERATURE, SEX, AND GENETIC BACKGROUND ON COLORATION OF CHORISTONEURA SPP. (LEPIDOPTERA: TORTRICIDAE) POPULATIONS IN SOUTH-CENTRAL OREGON. Canadian Entomologist, 1983, 115, 1583-1596.	0.4	13
260	VARIATION IN SPRING EMERGENCE PATTERNS AMONG WESTERN CHORISTONEURA SPP. (LEPIDOPTERA:) TJ ETQ	q0.0.0 rgE 0.4	BT /Overlock 1
261	AN UNIDENTIFIED LEAF MINE IN FOSSIL <i>MAHONIA RETICULATA</i> (BERBERIDACEAE). Canadian Entomologist, 1982, 114, 455-456.	0.4	8
262	Gypsy moth IPM. , 0, , 414-423.		0
263	Socio-environmental drivers of establishment of Lymantria dispar, a nonnative forest pest, in the United States. Biological Invasions, 0, , 1.	1.2	3
264	The impact is in the details: evaluating a standardized protocol and scale for determining non-native insect impact. NeoBiota, 0, 55, 61-83.	1.0	7
265	Pathologists and entomologists must join forces against forest pest and pathogen invasions. NeoBiota, 0, 58, 107-127.	1.0	28
266	Predicting the invasion range for a highly polyphagous and widespread forest herbivore. NeoBiota, 0, 59, 1-20.	1.0	3
267	Scale invariance in the spatial-dynamics of biological invasions. NeoBiota, 0, 62, 269-278.	1.0	7
268	Non-native plant drives the spatial dynamics of its herbivores: the case of black locust (Robinia) Tj ETQq0 0 0 rgB	T /Overloc	k 19 Tf 50 14

269	Demography of an invading forest insect reunited with hosts and parasitoids from its native range. NeoBiota, 0, 72, 81-107.	1.0	1
270	Spatial dynamics of spotted lanternfly, Lycorma delicatula, invasion of the Northeastern United States. NeoBiota, 0, 70, 23-42.	1.0	11