Dilip Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1162056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human-induced pluripotent stem cells in cardiovascular research: current approaches in cardiac differentiation, maturation strategies, and scalable production. Cardiovascular Research, 2022, 118, 20-36.	1.8	27
2	An evidence appraisal of heart organoids in a dish and commensurability to human heart development in vivo. BMC Cardiovascular Disorders, 2022, 22, 122.	0.7	2
3	Modeling Effects of Immunosuppressive Drugs on Human Hearts Using Induced Pluripotent Stem Cell–Derived Cardiac Organoids and Single-Cell RNA Sequencing. Circulation, 2022, 145, 1367-1369.	1.6	6
4	Cannabinoid receptor 1 antagonist genistein attenuates marijuana-induced vascular inflammation. Cell, 2022, 185, 1676-1693.e23.	13.5	40
5	Cellular and Engineered Organoids for Cardiovascular Models. Circulation Research, 2022, 130, 1780-1802.	2.0	27
6	Elastin-like hydrogel stimulates angiogenesis in a severe model of critical limb ischemia (CLI): An insight into the glyco-host response. Biomaterials, 2021, 269, 120641.	5.7	14
7	Building Multi-Dimensional Induced Pluripotent Stem Cells-Based Model Platforms to Assess Cardiotoxicity in Cancer Therapies. Frontiers in Pharmacology, 2021, 12, 607364.	1.6	20
8	Fabrication of 3D Cardiac Microtissue Arrays using Human iPSC-Derived Cardiomyocytes, Cardiac Fibroblasts, and Endothelial Cells. Journal of Visualized Experiments, 2021, , .	0.2	8
9	Method for selective ablation of undifferentiated human pluripotent stem cell populations for cell-based therapies. JCI Insight, 2021, 6, .	2.3	8
10	Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and de-repress alternative fate genes. Cell Stem Cell, 2021, 28, 938-954.e9.	5.2	61
11	A protocol for transdifferentiation of human cardiac fibroblasts into endothelial cells via activation of innate immunity. STAR Protocols, 2021, 2, 100556.	0.5	2
12	Generation of Human iPSCs by Protein Reprogramming and Stimulation of TLR3 Signaling. Methods in Molecular Biology, 2021, 2239, 153-162.	0.4	4
13	Temporal changes guided by mesenchymal stem cells on a 3D microgel platform enhance angiogenesis in vivo at a low-cell dose. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19033-19044.	3.3	45
14	Modeling Secondary Iron Overload Cardiomyopathy with Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cell Reports, 2020, 32, 107886.	2.9	27
15	Abstract 402: Adiponectin Receptor 3 is Associated With Endothelial Nitric Oxide Synthase Dysfunction and Predicts Insulin Resistance in South Asians. Circulation Research, 2019, 125, .	2.0	0
16	Tissue Engineering: Toward Customized Extracellular Niche Engineering: Progress in Cellâ€Entrapment Technologies (Adv. Mater. 1/2018). Advanced Materials, 2018, 30, 1870006.	11.1	1
17	Toward Customized Extracellular Niche Engineering: Progress in Cellâ€Entrapment Technologies. Advanced Materials, 2018, 30, 1703948	11.1	51
18	Allogeneic Mesenchymal Stromal Cells (MSCs) are of Comparable Efficacy to Syngeneic MSCs for Therapeutic Revascularization in C57BKSdb/db Mice Despite the Induction of Alloantibody. Cell Transplantation, 2018, 27, 1210-1221.	1.2	10

DILIP THOMAS

#	Article	IF	CITATIONS
19	Cell Carriers for Bone and Cartilage Repair In Vivo. , 2018, , 139-172.		1
20	The Functional Response of Mesenchymal Stem Cells to Electronâ€Beam Patterned Elastomeric Surfaces Presenting Micrometer to Nanoscale Heterogeneous Rigidity. Advanced Materials, 2017, 29, 1702119.	11.1	23
21	Stimulation of 3D osteogenesis by mesenchymal stem cells using a nanovibrational bioreactor. Nature Biomedical Engineering, 2017, 1, 758-770.	11.6	77
22	Scaffold and scaffoldâ€free selfâ€assembled systems in regenerative medicine. Biotechnology and Bioengineering, 2016, 113, 1155-1163.	1.7	34
23	Variability in Endogenous Perfusion Recovery of Immunocompromised Mouse Models of Limb Ischemia. Tissue Engineering - Part C: Methods, 2016, 22, 370-381.	1.1	19
24	Co-transfection of decorin and interleukin-10 modulates pro-fibrotic extracellular matrix gene expression in human tenocyte culture. Scientific Reports, 2016, 6, 20922.	1.6	30
25	Three-Dimensional Microgel Platform for the Production of Cell Factories Tailored for the Nucleus Pulposus. Bioconjugate Chemistry, 2015, 26, 1297-1306.	1.8	15
26	An injectable elastin-based gene delivery platform for dose-dependent modulation of angiogenesis and inflammation for critical limb ischemia. Biomaterials, 2015, 65, 126-139.	5.7	53
27	A shape-controlled tuneable microgel platform to modulate angiogenic paracrine responses in stem cells. Biomaterials, 2014, 35, 8757-8766.	5.7	79
28	Microgel Microenvironment Primes Adiposeâ€Đerived Stem Cells Towards an NP Cellsâ€Like Phenotype. Advanced Healthcare Materials, 2014, 3, 2012-2022.	3.9	41
29	Trachea and Larynx in Regenerative Medicine. , 2013, , 353-379.		4