
Liang Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1161933/publications.pdf Version: 2024-02-01

LIANC CHENC

#	Article	IF	CITATIONS
1	The Chemistry behind ThiC Rearrangement. ChemBioChem, 2022, 23, .	2.6	0
2	A Visibleâ€Lightâ€Promoted Câ€H Arylation and Heteroarylation of Uracil Derivatives with Diazoniums in Aqueous Conditions. Current Protocols, 2022, 2, .	2.9	2
3	A photo-responsive chemical modulation of m6A RNA demethylase FTO. Chemical Communications, 2021, 57, 10548-10551.	4.1	4
4	A fast and direct iodide-catalyzed oxidative 2-selenylation of tryptophan. Chemical Communications, 2021, 57, 3504-3507.	4.1	8
5	A Lightâ€Controllable Chemical Modulation of m 6 A RNA Methylation. Angewandte Chemie, 2021, 133, 18264-18269.	2.0	5
6	A Lightâ€Controllable Chemical Modulation of m ⁶ A RNA Methylation. Angewandte Chemie - International Edition, 2021, 60, 18116-18121.	13.8	23
7	A chemical labelling of N6-formyl adenosine (f6A) RNA. Chinese Chemical Letters, 2021, , .	9.0	3
8	Aqueous and Visible-Light-Promoted C–H (Hetero)arylation of Uracil Derivatives with Diazoniums. Journal of Organic Chemistry, 2021, 86, 16434-16447.	3.2	8
9	Asymmetric polymerase chain reaction and loop-mediated isothermal amplification (AP-LAMP) for ultrasensitive detection of microRNAs. Chinese Chemical Letters, 2020, 31, 159-162.	9.0	14
10	Modifying Methionine on Proteins. ChemBioChem, 2020, 21, 461-463.	2.6	8
11	Selective Inhibitors of AlkB Family of Nucleic Acid Demethylases. Biochemistry, 2020, 59, 230-239.	2.5	13
12	Regioselective synthesis and anticancer evaluation of H ₂ O ₂ -activable nucleosides. Chemical Communications, 2020, 56, 6484-6487.	4.1	11
13	Chemical Deprenylation of <i>N</i> ⁶ â€Isopentenyladenosine (i ⁶ A) RNA. Angewandte Chemie - International Edition, 2020, 59, 10645-10650.	13.8	24
14	Chemical Deprenylation of N 6 â€Isopentenyladenosine (i 6 A) RNA. Angewandte Chemie, 2020, 132, 10732-10737.	2.0	8
15	A Chemical Photoâ€Oxidation of 5â€Methyl Cytidines. Advanced Synthesis and Catalysis, 2019, 361, 4685-4690.	4.3	20
16	A Nal/H ₂ O ₂ -Mediated Sulfenylation and Selenylation of Unprotected Uracil and Its Derivatives. Organic Letters, 2019, 21, 6643-6647.	4.6	32
17	A label-free colorimetric detection of microRNA via G-quadruplex-based signal quenching strategy. Analytica Chimica Acta, 2019, 1079, 207-211.	5.4	31
18	Visibleâ€Light Facilitated Fluorescence "Switchâ€On―Labelling of 5â€Formylpyrimidine RNA. Advanced Synthesis and Catalysis, 2019, 361, 5406-5411.	4.3	11

LIANG CHENG

#	Article	IF	CITATIONS
19	Front Cover Picture: A Chemical Photoâ€Oxidation of 5â€Methyl Cytidines (Adv. Synth. Catal. 20/2019). Advanced Synthesis and Catalysis, 2019, 361, 4623-4623.	4.3	0
20	Dynamic modifications of biomacromolecules: mechanism and chemical interventions. Science China Life Sciences, 2019, 62, 1459-1471.	4.9	14
21	Visibleâ€Lightâ€Mediated Stereoselective 1,2â€lodoalkylation of Alkynes. Advanced Synthesis and Catalysis, 2019, 361, 1283-1288.	4.3	3
22	I 2 /TBHP Mediated Divergent C(sp 2)â€P Cleavage of Allenylphosphine Oxides: Substituentâ€Controlled Regioselectivity. Advanced Synthesis and Catalysis, 2019, 361, 3532-3537.	4.3	11
23	Identification of Flavin Mononucleotide as a Cellâ€Active Artificial <i>N</i> ⁶ â€Methyladenosine RNA Demethylase. Angewandte Chemie, 2019, 131, 5082-5086.	2.0	12
24	Identification of Flavin Mononucleotide as a Cellâ€Active Artificial <i>N</i> ⁶ â€Methyladenosine RNA Demethylase. Angewandte Chemie - International Edition, 2019, 58, 5028-5032.	13.8	42
25	A catalyst-free intermolecular <i>trans</i> -iodoalkylation of alkynes. Organic and Biomolecular Chemistry, 2018, 16, 899-903.	2.8	14
26	Ruthenium-Catalyzed Decarboxylative C–H Alkenylation in Aqueous Media: Synthesis of Tetrahydropyridoindoles. Journal of Organic Chemistry, 2018, 83, 7514-7522.	3.2	21
27	Identification of thienopyridine carboxamides as selective binders of HIV-1 <i>trans</i> Activation Response (TAR) and Rev Response Element (RRE) RNAs. Organic and Biomolecular Chemistry, 2018, 16, 9191-9196.	2.8	14
28	lodide/H2O2 Catalyzed Intramolecular Oxidative Amination for the Synthesis of 3,2′-Pyrrolidinyl Spirooxindoles. Molecules, 2018, 23, 2265.	3.8	15
29	Selective recognition of HIV RNA by dinuclear metallic ligands. Chinese Chemical Letters, 2018, 29, 1637-1640.	9.0	11
30	TEMPO promoted direct multi-functionalization of terminal alkynes with 2-oxindoles/benzofuran-2(3 <i>H</i>)-one. Organic and Biomolecular Chemistry, 2018, 16, 5228-5231.	2.8	3
31	Transition-Metal-Free Alkynylation of 2-Oxindoles through Radical–Radical Coupling. Journal of Organic Chemistry, 2017, 82, 2656-2663.	3.2	30
32	Tunable Heck–Mizoroki Reaction of Dibromonaphthalene Diimide with Aryl Ethylenes: Design, Synthesis, and Characterization of Coplanar NDI-Based Conjugated Molecules. Journal of Organic Chemistry, 2017, 82, 12806-12812.	3.2	8
33	Visible-light-mediated oxidative demethylation of N ⁶ -methyl adenines. Chemical Communications, 2017, 53, 10734-10737.	4.1	46
34	Intermolecular dearomative oxidative coupling of indoles with ketones and sulfonylhydrazines catalyzed by I2: synthesis of [2,3]-fused indoline tetrahydropyridazines. Science China Chemistry, 2016, 59, 1311-1316.	8.2	4
35	Cobalt-Catalyzed Peroxidation of 2-Oxindoles with Hydroperoxides. Journal of Organic Chemistry, 2016, 81, 5337-5344.	3.2	43
36	Metal-free allylation of electron-rich heteroaryl boronic acids with allylic alcohols. Tetrahedron, 2016, 72, 1873-1880.	1.9	12

LIANG CHENG

#	Article	IF	CITATIONS
37	FeCl ₃ -Mediated Radical Tandem Reactions of 3-Benzyl-2-oxindoles with Styrene Derivatives for the Stereoselective Synthesis of Spirocyclohexene Oxindoles. Organic Letters, 2016, 18, 1382-1385.	4.6	41
38	A metal-free yne-addition/1,4-aryl migration/decarboxylation cascade reaction of alkynoates with C _{sp3} –H centers. Organic and Biomolecular Chemistry, 2016, 14, 2210-2217.	2.8	46
39	Evidence for tunneling in base-catalyzed isomerization of glyceraldehyde to dihydroxyacetone by hydride shift under formose conditions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4218-4220.	7.1	32
40	Deoxypolypeptides bind and cleave RNA. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7920-7924.	7.1	13
41	Binding and biomimetic cleavage of the RNA poly(U) by synthetic polyimidazoles. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12884-12887.	7.1	25
42	Nucleophilic addition of regioselectively lithiated indoline with aldimines for the syntheses of 2- and 7-indolinyl methanamine derivatives. Tetrahedron Letters, 2012, 53, 4004-4007.	1.4	2
43	Highly enantioselective Michael addition of 2-oxindoles to vinyl selenone in RTILs catalyzed by a Cinchona alkaloid-based thiourea. Chemical Communications, 2011, 47, 6644.	4.1	52
44	Asymmetric organocatalytic N-nitroso-aldol reaction of oxindoles. Tetrahedron: Asymmetry, 2010, 21, 2800-2806.	1.8	49
45	Enantioselective Organocatalytic <i>anti</i> -Mannich-Type Reaction of <i>N</i> -Unprotected 3-Substituted 2-Oxindoles with Aromatic <i>N</i> -Ts-aldimines. Journal of Organic Chemistry, 2009, 74, 4650-4653.	3.2	111
46	Highly Enantioselective and Organocatalytic α-Amination of 2-Oxindoles. Organic Letters, 2009, 11, 3874-3877.	4.6	192
47	Highly diastereoselective reactions of 2-lithiated indoles with chiral N-tert-butanesulfinyl aldimines for the synthesis of chiral (2-indolyl) methanamine derivatives. Tetrahedron: Asymmetry, 2007, 18, 1833-1843.	1.8	28